Suppr超能文献

基于图像的木薯疾病检测的深度学习

Deep Learning for Image-Based Cassava Disease Detection.

作者信息

Ramcharan Amanda, Baranowski Kelsee, McCloskey Peter, Ahmed Babuali, Legg James, Hughes David P

机构信息

Department of Entomology, College of Agricultural Sciences, Penn State University, State College, PA, United States.

Department of Computer Science, Pittsburgh University, Pittsburgh, PA, United States.

出版信息

Front Plant Sci. 2017 Oct 27;8:1852. doi: 10.3389/fpls.2017.01852. eCollection 2017.

Abstract

Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.

摘要

木薯是全球人类食物中第三大碳水化合物来源,但易受病毒病影响,这可能威胁到撒哈拉以南非洲地区的粮食安全稳定。需要新的木薯病害检测方法来支持加强防控,以避免这场危机。图像识别为病害检测提供了一种经济高效且可扩展的技术。新的深度学习模型为该技术轻松部署到移动设备上提供了一条途径。利用在坦桑尼亚实地拍摄的木薯病害图像数据集,我们应用迁移学习来训练一个深度卷积神经网络,以识别三种病害和两种虫害损伤类型(或无损伤情况)。训练最佳的模型对褐斑病(BLS)的准确率为98%,对红蜘蛛损伤(RMD)的准确率为96%,对绿蜘蛛损伤(GMD)的准确率为95%,对木薯褐色条纹病(CBSD)的准确率为98%,对木薯花叶病(CMD)的准确率为96%。最佳模型对未用于训练过程的数据的总体准确率达到了93%。我们的结果表明,针对田间图像进行图像识别的迁移学习方法为数字植物病害检测提供了一种快速、经济且易于部署的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc5/5663696/9db5d386cac4/fpls-08-01852-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验