Suppr超能文献

基于软计算技术和深度学习的温室番茄叶部病害智能农业机器人检测系统

Intelligent agricultural robotic detection system for greenhouse tomato leaf diseases using soft computing techniques and deep learning.

机构信息

School of Mechanical Engineering, Hanoi University of Science and Technology, 1st Dai Co Viet Road, Hai Ba Trung District, Hanoi, 100000, Vietnam.

出版信息

Sci Rep. 2024 Oct 12;14(1):23887. doi: 10.1038/s41598-024-75285-5.

Abstract

The development of soft computing methods has had a significant influence on the subject of autonomous intelligent agriculture. This paper offers a system for autonomous greenhouse navigation that employs a fuzzy control algorithm and a deep learning-based disease classification model for tomato plants, identifying illnesses using photos of tomato leaves. The primary novelty in this study is the introduction of an upgraded Deep Convolutional Generative Adversarial Network (DCGAN) that creates augmented pictures of disease tomato leaves from original genuine samples, considerably enhancing the training dataset. To find the optimum training model, four deep learning networks (VGG19, Inception-v3, DenseNet-201, and ResNet-152) were carefully compared on a dataset of nine tomato leaf disease classes. These models have validation accuracy of 92.32%, 90.83%, 96.61%, and 97.07%, respectively, when using the original PlantVillage dataset. The system then uses an enhanced dataset with ResNet-152 network design to achieve a high accuracy of 99.69%, as compared to the original dataset with ResNet-152's accuracy of 97.07%. This improvement indicates the use of the proposed DCGAN in improving the performance of the deep learning model for greenhouse plant monitoring and disease detection. Furthermore, the proposed approach may have a broader use in various agricultural scenarios, potentially altering the field of autonomous intelligent agriculture.

摘要

软计算方法的发展对自主智能农业这一主题产生了重大影响。本文提出了一种自主温室导航系统,该系统采用模糊控制算法和基于深度学习的番茄植物疾病分类模型,通过拍摄番茄叶片的照片来识别疾病。本研究的主要新颖之处在于引入了经过升级的深度卷积生成对抗网络(DCGAN),该网络可从原始真实样本中生成番茄病叶的增强图片,极大地丰富了训练数据集。为了找到最优的训练模型,在一个包含九个番茄叶疾病类别的数据集上,我们仔细比较了四个深度学习网络(VGG19、Inception-v3、DenseNet-201 和 ResNet-152)。当使用原始 PlantVillage 数据集时,这些模型的验证准确率分别为 92.32%、90.83%、96.61%和 97.07%。然后,系统使用增强后的数据集和 ResNet-152 网络设计实现了 99.69%的高精度,而原始数据集的 ResNet-152 精度为 97.07%。这一改进表明,所提出的 DCGAN 可用于提高深度学习模型在温室植物监测和疾病检测方面的性能。此外,该方法可能在各种农业场景中有更广泛的应用,从而改变自主智能农业领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验