Somanna Banothu, Gupta Sushma, Rajender Jatoth, Alshareef Muhannad, Babqi Abdulrahman, Namomsa Borchala, Ghoneim Sherif S M
Department of Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, MP, India.
Department of Electrical Engineering, College of Engineering and Computing in Al-Qunfudhah, Umm al-Qura University, Mecca, Saudi Arabia.
Sci Rep. 2025 Aug 25;15(1):31161. doi: 10.1038/s41598-025-98006-y.
This paper introduces a comprehensive framework for fault detection and control in DC microgrids (DCMGs) integrating diverse energy sources. A resistance-based fault detection scheme is proposed to address intermittent DC link faults, enabling efficient operation without complete system shutdown. Perturb and Observe (P&O) techniques are employed for PV and wind power tracking, while proportional-integral (PI) controllers manage fuel cell (FC) and battery energy storage systems (BESS). Fuzzy logic controllers (FLCs) demonstrate superior performance over traditional PI controllers in mitigating voltage and current (V-I) fluctuations. To optimize DC-link V-I levels, a genetic algorithm-tuned PI controller (GA-PIC) and evolution-inspired PI controller are utilized. The proposed method is validated using Opal-RT simulations under various scenarios, demonstrating improved performance over un-optimized configurations. The key achievement of this research is a validated, optimized control and protection scheme that significantly enhances the stability and reliability of DCMGs under fault conditions. Specifically, the work develops a distributed fault detection and control method to improve protection and address stability and power quality in DCMGs. It also presents a GA-based PI-optimized controller for DCMGs with FC and battery storage, and an optimized controller integrating FLCs and GA-tuned PI-Cs to reduce V-I fluctuations. Furthermore, an integrated DC protection scheme is implemented, demonstrating enhanced fault detection speed and accuracy compared to individual schemes. The effectiveness of the proposed GA-PI-C is validated through Opal RT real-time simulations, confirming the efficacy of FLCs in dynamic system responses and contributing to more robust and reliable DCMG operation.
本文介绍了一种用于集成多种能源的直流微电网(DCMG)故障检测与控制的综合框架。提出了一种基于电阻的故障检测方案来解决间歇性直流链路故障,实现高效运行而无需完全关闭系统。采用扰动观察(P&O)技术进行光伏和风力发电跟踪,同时采用比例积分(PI)控制器管理燃料电池(FC)和电池储能系统(BESS)。在减轻电压和电流(V-I)波动方面,模糊逻辑控制器(FLC)比传统PI控制器表现出更优的性能。为了优化直流链路的V-I水平,使用了遗传算法调谐的PI控制器(GA-PIC)和受进化启发的PI控制器。所提出的方法在各种场景下通过Opal-RT仿真进行了验证,与未优化的配置相比性能得到了改善。这项研究的关键成果是一个经过验证的、优化的控制和保护方案,该方案在故障条件下显著提高了DCMG的稳定性和可靠性。具体而言,该工作开发了一种分布式故障检测和控制方法,以改善保护并解决DCMG中的稳定性和电能质量问题。它还提出了一种用于具有FC和电池储能的DCMG的基于GA的PI优化控制器,以及一种集成FLC和GA调谐PI-C的优化控制器,以减少V-I波动。此外,实施了一种集成直流保护方案,与单独的方案相比,其故障检测速度和准确性得到了提高。通过Opal RT实时仿真验证了所提出的GA-PI-C的有效性,证实了FLC在动态系统响应中的有效性,并有助于实现更稳健、可靠的DCMG运行。