Suppr超能文献

重金属、化学污染与隐藏线索:解读莫雷帕斯湖

Heavy Metals, Chemical Pollution, and Hidden Clues: Decoding Lake Maurepas.

作者信息

Rahman Md Alinur, Gunawardhana Thilini, LaCour Zachary, Erwin Erin, Emami Fereshteh

机构信息

Department of Chemistry and Physics, College of Science and Technology, Southeastern Louisiana University, Hammond 70402, Louisiana, United States.

出版信息

ACS Omega. 2025 Aug 10;10(32):35637-35650. doi: 10.1021/acsomega.5c01978. eCollection 2025 Aug 19.

Abstract

This study provides the first comprehensive assessment of toxic chemicals and heavy metals (HMs) in Lake Maurepas, introducing an innovative approach that integrates the Bayesian spatiotemporal multivariate receptor model (BSMRM) with event response and causality analysis (ERCA). This framework quantitatively evaluates pollutant sources and drivers while identifying high-risk zones across water sampling sites. Using ERCA, we investigated the influence of environmental and anthropogenic factors on the spatiotemporal distribution of sources in the water column. Temporal clustering revealed four distinct source behaviors aligning with anomaly detection, linked to events near river mouths and Pass Manchac. Among the sources, transportation-recreational-accidental release (TRAR) was the most sensitive and death and decay of biological species (DDBS) appears to be the most tolerable source. Sensitivity analysis of ERCA showed that salinity, atmospheric pressure, and wind speed play a dominant role in shaping pollutant variability. Conversely, seismic-drilling predominantly caused negative sensitivities by altering hydrodynamics to reduce transport, but also had a slight positive effect on geological contaminant mobilization. ERCA's causality analysis identified local waterways and Pass Manchac as key pollutant origins, with hydrodynamic circulation and site interactions shaping the broader distributions. These findings offer insights into pollutant resilience and thresholds, providing a framework for targeted mitigation strategies in lakes and similar ecosystems.

摘要

本研究首次对莫雷帕斯湖中的有毒化学物质和重金属进行了全面评估,引入了一种创新方法,即将贝叶斯时空多元受体模型(BSMRM)与事件响应和因果关系分析(ERCA)相结合。该框架在确定跨水采样点的高风险区域时,对污染物来源和驱动因素进行了定量评估。利用ERCA,我们研究了环境和人为因素对水柱中污染物来源时空分布的影响。时间聚类揭示了与异常检测相关的四种不同的源行为,这些行为与河口和曼恰克海峡附近的事件有关。在这些来源中,运输-娱乐-意外排放(TRAR)是最敏感的,而生物物种的死亡和腐烂(DDBS)似乎是最可容忍的来源。ERCA的敏感性分析表明,盐度、大气压力和风速在塑造污染物变异性方面起主导作用。相反,地震钻探主要通过改变水动力来减少运输而导致负敏感性,但对地质污染物的迁移也有轻微的积极影响。ERCA的因果关系分析确定了当地水道和曼恰克海峡是关键的污染物来源,水动力循环和站点相互作用塑造了更广泛的分布。这些发现为污染物的恢复力和阈值提供了见解,为湖泊和类似生态系统的有针对性的缓解策略提供了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4041/12368730/a34fe85a602a/ao5c01978_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验