Suppr超能文献

使用血清肌酐和胱抑素C的肌肉减少症筛查指标在代谢功能障碍相关脂肪性肝病中的比较

Comparison of sarcopenia screening indices using serum creatinine and cystatin C in metabolic dysfunction-associated steatotic liver disease.

作者信息

Hwang Inyoung, Lee Shi-Ra, Kim Yun, Lee Sang Won

机构信息

Department of Clinical Pharmacology and Therapeutics, Hanyang University Seoul Hospital, Seoul, Republic of Korea.

Department of Pharmacology, Hanyang University College of Medicine, Seoul, Republic of Korea.

出版信息

Front Med (Lausanne). 2025 Aug 7;12:1633837. doi: 10.3389/fmed.2025.1633837. eCollection 2025.

Abstract

BACKGROUND

Metabolic dysfunction-associated steatotic liver disease (MASLD) and sarcopenia share underlying pathophysiological mechanisms and can bidirectionally influence the development and progression of each other. Diagnosing sarcopenia in individuals with MASLD is challenging due to overlapping symptoms and the frequent requirement for expensive, specialized equipment for muscle mass assessment. Therefore, accessible screening methods are crucial. Serum indices based on creatinine (Cr) and cystatin C (CysC), including Calculated Body Muscle Mass (CBMM), Sarcopenia Index (SI), and estimated glomerular filtration rate (eGFR) ratio, have emerged as potential biomarkers for sarcopenia. This study aimed to compare the performance of these serum indices in screening for low skeletal muscle index (SMI) among patients with MASLD.

METHODS

This prospective observational study enrolled 146 participants with MASLD. Anthropometric and laboratory data were collected. The CBMM, SI, and eGFR ratios were calculated using serum Cr and CysC levels. Low SMI was determined using Bioelectrical Impedance Analysis (BIA) according to the Asian Working Group for Sarcopenia (AWGS) 2019 criteria. Linear regression analysis was used to assess the correlations between serum indices and SMI. Receiver Operating Characteristic (ROC) curve analysis was used to evaluate the discriminative ability of these serum indices for detecting low SMI. Furthermore, machine learning models (Linear Regression, Random Forest, and XGBoost), coupled with SHapley Additive exPlanations (SHAP) analysis, were employed to evaluate the importance of these indices in predicting low SMI.

RESULTS

Patients with higher fibrosis-4 (FIB-4) scores (≥2.67) had a significantly higher prevalence of low SMI. CBMM demonstrated the strongest correlation with SMI (R = 0.4306,  < 0.0001) and the best discriminative ability for low SMI (Area under ROC: 0.9149 for males and 0.9444 for females) compared with SI and eGFR ratio. Machine learning models consistently identified CBMM as the most important feature for predicting SMI based on the SHAP analysis.

CONCLUSION

These findings suggest that CBMM, derived from readily available serum markers, could serve as a valuable initial screening tool for identifying MASLD patients at risk of sarcopenia who may benefit from further assessment and early interventions.

摘要

背景

代谢功能障碍相关脂肪性肝病(MASLD)和肌肉减少症具有共同的潜在病理生理机制,且可相互影响对方的发生发展。由于症状重叠,且评估肌肉量常常需要昂贵的专业设备,因此诊断MASLD患者的肌肉减少症具有挑战性。所以,便捷的筛查方法至关重要。基于肌酐(Cr)和胱抑素C(CysC)的血清指标,包括计算体肌量(CBMM)、肌肉减少症指数(SI)和估计肾小球滤过率(eGFR)比值,已成为肌肉减少症的潜在生物标志物。本研究旨在比较这些血清指标在筛查MASLD患者低骨骼肌指数(SMI)方面的性能。

方法

这项前瞻性观察性研究纳入了146例MASLD患者。收集了人体测量和实验室数据。使用血清Cr和CysC水平计算CBMM、SI和eGFR比值。根据亚洲肌肉减少症工作组(AWGS)2019标准,采用生物电阻抗分析(BIA)确定低SMI。采用线性回归分析评估血清指标与SMI之间的相关性。采用受试者工作特征(ROC)曲线分析评估这些血清指标检测低SMI的判别能力。此外,结合SHapley加性解释(SHAP)分析的机器学习模型(线性回归、随机森林和XGBoost)被用于评估这些指标在预测低SMI中的重要性。

结果

纤维化-4(FIB-4)评分较高(≥2.67)的患者低SMI患病率显著更高。与SI和eGFR比值相比,CBMM与SMI的相关性最强(R = 0.4306,<0.0001),对低SMI的判别能力最佳(男性ROC曲线下面积:0.9149;女性:0.9444)。基于SHAP分析,机器学习模型一致将CBMM确定为预测SMI的最重要特征。

结论

这些研究结果表明,由易于获得的血清标志物得出的CBMM,可作为一种有价值的初始筛查工具,用于识别有肌肉减少症风险的MASLD患者,这些患者可能受益于进一步评估和早期干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4c/12367731/f6241fd58688/fmed-12-1633837-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验