Suppr超能文献

整合颅内动脉钙化的机器学习模型用于预测机械取栓的结果。

Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.

作者信息

Li Guangzong, Zhang Yuesen, Li Di, Zhao Manhong, Yin Lin

机构信息

Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.

Department of Neurointervention and Neurocritical Care, The Central Hospital Affiliated to Dalian University of Technology, Dalian, China.

出版信息

Front Neurol. 2025 Aug 6;16:1642807. doi: 10.3389/fneur.2025.1642807. eCollection 2025.

Abstract

OBJECTIVE

To investigate whether intracranial artery calcification (IAC) serves as a reliable imaging predictor of mechanical thrombectomy (MT) outcomes and to develop robust machine learning (ML) models incorporating preoperative emergency data to predict outcomes in patients with acute ischemic stroke (AIS).

METHODS

This retrospective study included patients with AIS and anterior circulation occlusion who underwent MT at the Second Affiliated Hospital of Dalian Medical University and the Central Hospital Affiliated to Dalian University of Technology between January 2017 and December 2024. Patients were categorized into favorable [modified Rankin Scale (mRS) 0-2] and poor outcome (mRS 3-6) groups based on their 90-day functional independence. Preoperative clinical and radiological data, including a quantitative assessment of IAC, were systematically collected. Eleven ML algorithms were trained and validated using Python, and external validation and performance evaluations were conducted. The Shapley additive explanation (SHAP) method was used to interpret the optimal model.

RESULTS

A total of 823 eligible patients were enrolled and stratified into training ( = 437), internal validation ( = 188), and external testing ( = 198) cohorts. The Extra Trees model demonstrated the highest predictive accuracy. The top three predictors were a history of hypertension, serum albumin level, and total calcified volume.

CONCLUSION

The total volume of IAC is a critical imaging biomarker for predicting MT outcomes in patients with anterior circulation AIS. The ML models developed using preoperative emergency data demonstrated strong predictive performance, providing a valuable tool to help clinicians identify suitable MT candidates with greater precision.

摘要

目的

探讨颅内动脉钙化(IAC)是否可作为机械取栓(MT)治疗结果的可靠影像学预测指标,并开发结合术前急诊数据的强大机器学习(ML)模型,以预测急性缺血性卒中(AIS)患者的治疗结果。

方法

这项回顾性研究纳入了2017年1月至2024年12月期间在大连医科大学附属第二医院和大连理工大学附属中心医院接受MT治疗的AIS和前循环闭塞患者。根据患者90天的功能独立性,将其分为预后良好组(改良Rankin量表[mRS]评分为0 - 2)和预后不良组(mRS评分为3 - 6)。系统收集术前临床和影像学数据,包括IAC的定量评估。使用Python对11种ML算法进行训练和验证,并进行外部验证和性能评估。采用Shapley值相加解释(SHAP)方法解释最优模型。

结果

共纳入823例符合条件的患者,并分为训练组(n = 437)内部验证组(n = 188)和外部测试组(n = 198)。Extra Trees模型显示出最高的预测准确性。前三个预测因素是高血压病史、血清白蛋白水平和钙化总体积。

结论

IAC的总体积是预测前循环AIS患者MT治疗结果的关键影像学生物标志物。使用术前急诊数据开发的ML模型具有很强的预测性能,为临床医生更精确地识别合适的MT候选者提供了有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e2/12368346/e72c644cb387/fneur-16-1642807-g001.jpg

相似文献

1
Machine learning models integrating intracranial artery calcification to predict outcomes of mechanical thrombectomy.
Front Neurol. 2025 Aug 6;16:1642807. doi: 10.3389/fneur.2025.1642807. eCollection 2025.
3
Sex-based differences in inflammatory predictors of outcomes in patients undergoing mechanical thrombectomy: an inverse probability weighting analysis.
Ther Adv Neurol Disord. 2025 Jun 21;18:17562864251345719. doi: 10.1177/17562864251345719. eCollection 2025.
8
9
Endovascular thrombectomy with versus without intravenous thrombolysis for acute ischaemic stroke.
Cochrane Database Syst Rev. 2025 Apr 24;4(4):CD015721. doi: 10.1002/14651858.CD015721.pub2.

本文引用的文献

1
Improved CKD classification based on explainable artificial intelligence with extra trees and BBFS.
Sci Rep. 2025 May 22;15(1):17861. doi: 10.1038/s41598-025-02355-7.
2
Alteplase for Posterior Circulation Ischemic Stroke at 4.5 to 24 Hours.
N Engl J Med. 2025 Apr 3;392(13):1288-1296. doi: 10.1056/NEJMoa2413344.
4
Prognostic impact of intracranial arteriosclerosis subtype after endovascular treatment for acute ischaemic stroke.
Eur J Neurol. 2025 Jan;32(1):e16509. doi: 10.1111/ene.16509. Epub 2024 Oct 17.
5
Tenecteplase for Stroke at 4.5 to 24 Hours with Perfusion-Imaging Selection.
N Engl J Med. 2024 Feb 22;390(8):701-711. doi: 10.1056/NEJMoa2310392. Epub 2024 Feb 8.
7
Intracranial Artery Calcifications Profile as a Predictor of Recanalization Failure in Endovascular Stroke Treatment.
Stroke. 2023 Feb;54(2):430-438. doi: 10.1161/STROKEAHA.122.041257. Epub 2023 Jan 23.
8
An explainable machine learning model for predicting the outcome of ischemic stroke after mechanical thrombectomy.
J Neurointerv Surg. 2023 Nov;15(11):1136-1141. doi: 10.1136/jnis-2022-019598. Epub 2022 Nov 29.
10
Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning.
Stroke. 2020 Dec;51(12):3541-3551. doi: 10.1161/STROKEAHA.120.030287. Epub 2020 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验