S L Resmi, V Hashim, Mohammed Jesna, P N Dileep
Department of Mechanical Engineering, TKM College of Engineering, Kollam, Kerala, India.
Adv Orthop. 2025 Aug 14;2025:6257188. doi: 10.1155/aort/6257188. eCollection 2025.
Finite element analysis (FEA) stands as a cornerstone in preclinical investigations for implant therapy, particularly in orthopaedics and biomechanics. Accurate modelling of bone properties is crucial for meaningful FEA outcomes, considering the complex nature of bone tissue. This study proposes a novel approach by integrating CT-based imaging data and machine learning to predict patient-specific Young's modulus values. A back propagation neural network (BPNN), incorporating texture properties extracted from CT images, demonstrates robustness in predicting Young's modulus. Validation against three-point bending experiments on rabbit femur bones shows promising results, with stress values within 13% of those from FEA. The proposed methodology holds the potential for enhancing preclinical evaluations of implant therapy and fostering the development of patient-specific implants for improved clinical outcomes.
有限元分析(FEA)是植入治疗临床前研究的基石,尤其是在骨科和生物力学领域。考虑到骨组织的复杂性,准确模拟骨特性对于获得有意义的有限元分析结果至关重要。本研究提出了一种新方法,通过整合基于CT的成像数据和机器学习来预测患者特异性杨氏模量值。一种反向传播神经网络(BPNN),结合从CT图像中提取的纹理特性,在预测杨氏模量方面表现出稳健性。针对兔股骨的三点弯曲实验进行的验证显示出有前景的结果,应力值与有限元分析结果的偏差在13%以内。所提出的方法有潜力加强植入治疗的临床前评估,并促进开发针对患者的植入物以改善临床结果。