Brock Natasha, Kaur Navneet, Halford Nigel G
Rothamsted Research, Harpenden, AL5 2JQ UK.
J Plant Biochem Biotechnol. 2025;34(3):599-614. doi: 10.1007/s13562-025-00981-w. Epub 2025 Apr 15.
Population growth, diminishing resources and climate change are some of the many challenges that agriculture must address to satisfy the needs of the global population whilst ensuring the safety and nutritional value of our food. Wheat () is tremendously important for human nutrition, providing starch (and, therefore, energy), fibre, protein, vitamins, and micronutrients. It is the second most widely grown crop behind maize (), with 808 million tonnes of grain being produced in 2021-2022. In comparison, the production figure for 1961 was 222 million tonnes, and there have been similar increases for maize and rice (). World population over the same period has increased from just over 3 billion to just over 8 billion, a stark reminder of just how important increased crop production has been in maintaining food security over that period, and for these cereals it has been achieved without additional land use. Plant breeding has played an important part in enabling crop production to keep increasing to meet demand and this will have to continue through the coming decades. Innovative technologies will play a part in that, and here we review how the new technology of genome editing is being applied in crop genetic improvement, with a focus on wheat. We cover oligonucleotide-directed mutagenesis and the use of site-directed nucleases, including meganucleases (MegNs), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nucleases. We describe established genome editing strategies, mainly involving gene 'knockouts', and the new applications of base and prime editing using CRISPR/Cas. We also discuss how genome editing for crop improvement is developing in the context of an evolving regulatory landscape.
人口增长、资源减少和气候变化是农业必须应对的诸多挑战中的一部分,以满足全球人口的需求,同时确保我们食物的安全性和营养价值。小麦对人类营养极为重要,能提供淀粉(从而提供能量)、纤维、蛋白质、维生素和微量营养素。它是仅次于玉米的第二大种植作物,2021 - 2022年的谷物产量为8.08亿吨。相比之下,1961年的产量为2.22亿吨,玉米和水稻也有类似的增长。同期世界人口从刚超过30亿增加到刚超过80亿,这鲜明地提醒人们,在那段时期增加作物产量对维持粮食安全有多重要,而对于这些谷物来说,产量的增加是在没有额外增加土地使用的情况下实现的。植物育种在使作物产量持续增长以满足需求方面发挥了重要作用,并且在未来几十年这一作用仍将持续。创新技术将在其中发挥作用,在此我们回顾基因组编辑这项新技术如何应用于作物遗传改良,重点是小麦。我们涵盖了寡核苷酸定向诱变以及定点核酸酶的使用,包括归巢核酸酶(MegNs)、锌指核酸酶(ZFNs)、转录激活样效应物核酸酶(TALENs)和成簇规律间隔短回文重复序列(CRISPR)相关(Cas)核酸酶。我们描述了已确立的基因组编辑策略,主要涉及基因“敲除”,以及使用CRISPR/Cas的碱基编辑和引导编辑的新应用。我们还讨论了在不断演变的监管环境背景下,用于作物改良的基因组编辑是如何发展的。