Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
Microbiome. 2022 Dec 12;10(1):210. doi: 10.1186/s40168-022-01358-0.
Monitoring the adaptation of microorganisms to the extreme environment of the International Space Station (ISS) is crucial to understanding microbial evolution and infection prevention. Acinetobacter pittii is an opportunistic nosocomial pathogen, primarily impacting immunocompromised patients, that was recently isolated from two missions aboard the ISS.
Here, we report how ISS-associated A. pittii (n = 20 genomes) has formed its own genetically and functionally discrete clade distinct from most Earth-bound isolates (n = 291 genomes). The antimicrobial susceptibility testing of ISS strains and two related clinical isolates demonstrated that ISS strains acquired more resistance, specifically with regard to expanded-spectrum cephalosporins, despite no prediction of increased resistance based on genomic analysis of resistance genes. By investigating 402 longitudinal environmental and host-associated ISS metagenomes, we observed that viable A. pittii is increasing in relative abundance and therefore potentially exhibiting succession, being identified in >2X more metagenomic samples in back-to-back missions. ISS strains additionally contain functions that enable them to survive in harsh environments, including the transcriptional regulator LexA. Via a genome-wide association study, we identified a high level of mutational burden in methionine sulfoxide reductase genes relative to the most closely related Earth strains.
Overall, these results indicated a step forward in understanding how microorganisms might evolve and alter their antibiotic resistance phenotype in extreme, resource-limited, human-built environments. Video Abstract.
监测微生物对国际空间站 (ISS) 极端环境的适应情况对于理解微生物进化和感染预防至关重要。鲍曼不动杆菌是一种机会性病原体,主要影响免疫功能低下的患者,最近从 ISS 的两次任务中分离出来。
在这里,我们报告了与 ISS 相关的 A. pittii(n = 20 个基因组)如何形成了自己的遗传和功能上与大多数地球分离株(n = 291 个基因组)不同的独特分支。对 ISS 株和两种相关临床分离株的抗菌药物敏感性测试表明,尽管基于耐药基因的基因组分析并未预测耐药性增加,但 ISS 株获得了更多的耐药性,特别是对扩展谱头孢菌素的耐药性。通过调查 402 个纵向环境和宿主相关的 ISS 宏基因组,我们观察到有活力的 A. pittii 的相对丰度增加,因此可能表现出演替,在连续两次任务中被鉴定为更多宏基因组样本中的存在。ISS 株还包含使其能够在恶劣环境中生存的功能,包括转录调节因子 LexA。通过全基因组关联研究,我们发现与最密切相关的地球株相比,甲硫氨酸亚砜还原酶基因的突变负担水平较高。
总的来说,这些结果表明,我们在理解微生物如何在极端、资源有限的人为环境中进化并改变其抗生素耐药表型方面取得了进展。视频摘要。