Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
Microbiome. 2024 Mar 23;12(1):62. doi: 10.1186/s40168-024-01777-1.
The International Space Station (ISS) stands as a testament to human achievement in space exploration. Despite its highly controlled environment, characterised by microgravity, increased CO levels, and elevated solar radiation, microorganisms occupy a unique niche. These microbial inhabitants play a significant role in influencing the health and well-being of astronauts on board. One microorganism of particular interest in our study is Enterobacter bugandensis, primarily found in clinical specimens including the human gastrointestinal tract, and also reported to possess pathogenic traits, leading to a plethora of infections.
Distinct from their Earth counterparts, ISS E. bugandensis strains have exhibited resistance mechanisms that categorise them within the ESKAPE pathogen group, a collection of pathogens recognised for their formidable resistance to antimicrobial treatments. During the 2-year Microbial Tracking 1 mission, 13 strains of multidrug-resistant E. bugandensis were isolated from various locations within the ISS. We have carried out a comprehensive study to understand the genomic intricacies of ISS-derived E. bugandensis in comparison to terrestrial strains, with a keen focus on those associated with clinical infections. We unravel the evolutionary trajectories of pivotal genes, especially those contributing to functional adaptations and potential antimicrobial resistance. A hypothesis central to our study was that the singular nature of the stresses of the space environment, distinct from any on Earth, could be driving these genomic adaptations. Extending our investigation, we meticulously mapped the prevalence and distribution of E. bugandensis across the ISS over time. This temporal analysis provided insights into the persistence, succession, and potential patterns of colonisation of E. bugandensis in space. Furthermore, by leveraging advanced analytical techniques, including metabolic modelling, we delved into the coexisting microbial communities alongside E. bugandensis in the ISS across multiple missions and spatial locations. This exploration revealed intricate microbial interactions, offering a window into the microbial ecosystem dynamics within the ISS.
Our comprehensive analysis illuminated not only the ways these interactions sculpt microbial diversity but also the factors that might contribute to the potential dominance and succession of E. bugandensis within the ISS environment. The implications of these findings are twofold. Firstly, they shed light on microbial behaviour, adaptation, and evolution in extreme, isolated environments. Secondly, they underscore the need for robust preventive measures, ensuring the health and safety of astronauts by mitigating risks associated with potential pathogenic threats. Video Abstract.
国际空间站(ISS)是人类在太空探索中取得的一项伟大成就。尽管它的环境受到高度控制,具有微重力、高二氧化碳水平和高太阳辐射等特点,但微生物仍占据着独特的生态位。这些微生物居民在影响宇航员的健康和福祉方面发挥着重要作用。在我们的研究中,一种特别引人关注的微生物是阴沟肠杆菌,它主要存在于临床标本中,包括人类胃肠道,并且也被报道具有致病性特征,导致多种感染。
与地球对应物不同,ISS 阴沟肠杆菌菌株表现出的耐药机制使其属于 ESKAPE 病原体群,该病原体群包括对各种抗菌治疗具有强大耐药性的病原体。在为期 2 年的微生物跟踪 1 任务中,从 ISS 内部的不同地点分离出了 13 株多药耐药阴沟肠杆菌。我们进行了一项全面的研究,以了解与陆地菌株相比,ISS 衍生的阴沟肠杆菌的基因组复杂性,特别关注那些与临床感染相关的菌株。我们揭示了关键基因的进化轨迹,特别是那些与功能适应性和潜在抗菌耐药性相关的基因。我们的研究提出了一个核心假设,即太空环境的单一压力,与地球上的任何压力都不同,可能是导致这些基因组适应性的原因。为了扩展我们的研究,我们细致地绘制了时间范围内 ISS 上阴沟肠杆菌的流行和分布情况。这项时间分析提供了有关阴沟肠杆菌在太空中的持久性、演替和潜在定植模式的见解。此外,通过利用代谢建模等先进的分析技术,我们深入研究了 ISS 上多个任务和空间位置上与阴沟肠杆菌共存的微生物群落。这项探索揭示了复杂的微生物相互作用,为 ISS 内部微生物生态系统动态提供了一个窗口。
我们的综合分析不仅揭示了这些相互作用塑造微生物多样性的方式,还揭示了可能导致阴沟肠杆菌在 ISS 环境中潜在优势和演替的因素。这些发现有两方面的意义。首先,它们揭示了极端隔离环境中微生物的行为、适应和进化。其次,它们强调了需要采取强有力的预防措施,通过减轻与潜在致病威胁相关的风险,确保宇航员的健康和安全。视频摘要。