Hofmann Johannes, Scheibinger Ramona, Fischer Bennet, Chemnitz Mario, Schmidt Markus A
Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena, Germany.
Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Philosophenweg 7, Jena, Germany.
Nat Commun. 2025 Aug 25;16(1):7918. doi: 10.1038/s41467-025-63213-8.
The field of computationally controlled light faces a strong demand for new platforms capable of providing adaptable light generation to meet the requirements of advanced photonic technologies. Here, we present the concept of computationally optimized nonlinear frequency conversion in programmable liquid-core fibers that enables real-time tunable and reconfigurable nonlinear power distribution through computationally optimized dispersion landscapes. The concept combines a temperature-sensitive mode in a liquid-core fiber, particle swarm optimization, fission of ultra-fast solitons, and a computer-controlled heating array to create a feedback loop for controlling output spectra via local temperature-induced dispersion modulation. Experiments and simulations show significant improvements in spectral power density over multiple predefined intervals simultaneously and broadband improved spectral flatness, highlighting the robustness and adaptability of the system. Beyond supercontinuum generation, the platform offers broad applicability to phenomena such as harmonic generation, soliton dynamics, spectral filtering, and multimode and hybrid fiber systems, opening up exciting opportunities for fundamental research and advanced photonic technologies.
计算控制光领域对能够提供适应性光生成以满足先进光子技术要求的新平台有着强烈需求。在此,我们提出了可编程液芯光纤中计算优化非线性频率转换的概念,该概念通过计算优化的色散分布实现实时可调谐和可重构的非线性功率分布。该概念结合了液芯光纤中的温度敏感模式、粒子群优化、超快孤子裂变以及计算机控制的加热阵列,以创建一个反馈回路,通过局部温度诱导的色散调制来控制输出光谱。实验和模拟表明,在多个预定义区间内,光谱功率密度同时有显著提高,并且宽带光谱平整度得到改善,突出了该系统的稳健性和适应性。除了超连续谱产生外,该平台还广泛适用于诸如谐波产生、孤子动力学、光谱滤波以及多模和混合光纤系统等现象,为基础研究和先进光子技术开辟了令人兴奋的机会。