Suppr超能文献

使用高度非线性光纤的极限学习机原理与度量

Principles and metrics of extreme learning machines using a highly nonlinear fiber.

作者信息

Hary Mathilde, Brunner Daniel, Leybov Lev, Ryczkowski Piotr, Dudley John M, Genty Goëry

机构信息

Photonics Laboratory, Tampere University, FI-33104, Tampere, Finland.

Université Marie et Louis Pasteur, CNRS UMR 6174, Institut FEMTO-ST, 25000, Besançon, France.

出版信息

Nanophotonics. 2025 Jun 26;14(16):2733-2748. doi: 10.1515/nanoph-2025-0012. eCollection 2025 Aug.

Abstract

Optical computing offers potential for ultra high-speed and low-latency computation by leveraging the intrinsic properties of light, such as parallelism and linear as well as nonlinear ultra-high bandwidth signal transformations. Here, we explore the use of highly nonlinear optical fibers (HNLFs) as platforms for optical computing based on the concept of extreme learning machines (ELMs). To evaluate the information processing potential of the system, we consider both task-independent and task-dependent performance metrics. The former focuses on intrinsic properties such as effective dimensionality, quantified via principal component analysis (PCA) on the system response to random inputs. The latter evaluates classification task accuracy on the MNIST digit dataset, highlighting how the system performs under different compression levels and nonlinear propagation regimes. We show that input power and fiber characteristics significantly influence the dimensionality of the computational system, with longer fibers and higher dispersion producing up to 100 principal components (PCs) at input power levels of 30 mW, where the PC corresponds to the linearly independent dimensions of the system. The spectral distribution of the PC's eigenvectors reveals that the high-dimensional dynamics facilitating computing through dimensionality expansion are located within 40 nm of the pump wavelength at 1,560 nm, providing general insight for computing with nonlinear Schrödinger equation systems. Task-dependent results demonstrate the effectiveness of HNLFs in classifying MNIST dataset images. Using input data compression through PC analysis, we inject MNIST images of various input dimensionality into the system and study the impact of input power upon classification accuracy. At optimized power levels, we achieve a classification test accuracy of 87 % ± 1.3 %, significantly surpassing the baseline of 83.7 % from linear systems. Noteworthy, we find that the best performance is not obtained at maximal input power, i.e., maximal system dimensionality, but at more than one order of magnitude lower. The same is confirmed regarding the MNIST image's compression, where accuracy is substantially improved when strongly compressing the image to less than 50 PCs. These are highly relevant findings for the dimensioning of future, ultrafast optical computing systems that can capture and process sequential input information on femtosecond timescales.

摘要

光学计算通过利用光的固有特性,如并行性、线性以及非线性超高带宽信号变换,为超高速和低延迟计算提供了潜力。在此,我们基于极限学习机(ELM)的概念,探索使用高度非线性光纤(HNLF)作为光学计算平台。为了评估该系统的信息处理潜力,我们考虑了与任务无关和与任务相关的性能指标。前者关注诸如有效维度等固有特性,通过对系统对随机输入的响应进行主成分分析(PCA)来量化。后者评估MNIST数字数据集上的分类任务准确性,突出系统在不同压缩级别和非线性传播 regime 下的表现。我们表明,输入功率和光纤特性会显著影响计算系统的维度,在 30 mW 的输入功率水平下,更长的光纤和更高的色散会产生多达 100 个主成分(PC),其中 PC 对应于系统的线性独立维度。PC 特征向量的光谱分布表明,通过维度扩展促进计算的高维动力学位于 1560 nm 泵浦波长的 40 nm 范围内,为使用非线性薛定谔方程系统进行计算提供了一般性见解。与任务相关的结果证明了 HNLF 在分类 MNIST 数据集图像方面的有效性。通过 PC 分析进行输入数据压缩,我们将各种输入维度的 MNIST 图像注入系统,并研究输入功率对分类准确性的影响。在优化的功率水平下,我们实现了 87%±1.3%的分类测试准确率,显著超过了线性系统 83.7%的基线。值得注意的是,我们发现最佳性能并非在最大输入功率即最大系统维度时获得,而是在低一个多数量级以上时获得。关于 MNIST 图像的压缩也得到了同样的证实,当将图像强烈压缩到少于 50 个 PC 时,准确性会大幅提高。这些发现对于未来能够在飞秒时间尺度上捕获和处理顺序输入信息的超快光学计算系统的尺寸设计具有高度相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd42/12338874/a7e90b96abf5/j_nanoph-2025-0012_fig_001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验