Suppr超能文献

基于裂变的宽带频率生成的神经形态计算。

Neuromorphic Computing via Fission-based Broadband Frequency Generation.

作者信息

Fischer Bennet, Chemnitz Mario, Zhu Yi, Perron Nicolas, Roztocki Piotr, MacLellan Benjamin, Di Lauro Luigi, Aadhi A, Rimoldi Cristina, Falk Tiago H, Morandotti Roberto

机构信息

Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Quebec, J3X1S2, Canada.

Leibniz Institute of Photonic Technology, Albert-Einstein Str. 9, 07745, Jena, Germany.

出版信息

Adv Sci (Weinh). 2023 Dec;10(35):e2303835. doi: 10.1002/advs.202303835. Epub 2023 Oct 2.

Abstract

The performance limitations of traditional computer architectures have led to the rise of brain-inspired hardware, with optical solutions gaining popularity due to the energy efficiency, high speed, and scalability of linear operations. However, the use of optics to emulate the synaptic activity of neurons has remained a challenge since the integration of nonlinear nodes is power-hungry and, thus, hard to scale. Neuromorphic wave computing offers a new paradigm for energy-efficient information processing, building upon transient and passively nonlinear interactions between optical modes in a waveguide. Here, an implementation of this concept is presented using broadband frequency conversion by coherent higher-order soliton fission in a single-mode fiber. It is shown that phase encoding on femtosecond pulses at the input, alongside frequency selection and weighting at the system output, makes transient spectro-temporal system states interpretable and allows for the energy-efficient emulation of various digital neural networks. The experiments in a compact, fully fiber-integrated setup substantiate an anticipated enhancement in computational performance with increasing system nonlinearity. The findings suggest that broadband frequency generation, accessible on-chip and in-fiber with off-the-shelf components, may challenge the traditional approach to node-based brain-inspired hardware design, ultimately leading to energy-efficient, scalable, and dependable computing with minimal optical hardware requirements.

摘要

传统计算机架构的性能局限导致了受大脑启发的硬件的兴起,光学解决方案因其线性运算的能源效率、高速性和可扩展性而受到欢迎。然而,由于非线性节点的集成功耗大且难以扩展,利用光学来模拟神经元的突触活动仍然是一个挑战。神经形态波计算基于波导中光学模式之间的瞬态和被动非线性相互作用,为节能信息处理提供了一种新范式。在此,通过单模光纤中相干高阶孤子裂变实现宽带频率转换,展示了这一概念的一种实现方式。结果表明,在输入端对飞秒脉冲进行相位编码,以及在系统输出端进行频率选择和加权,使得瞬态光谱 - 时间系统状态可解释,并允许对各种数字神经网络进行节能模拟。在紧凑的全光纤集成装置中进行的实验证实了随着系统非线性增加,计算性能会有预期的提升。研究结果表明,利用现成组件在片上和光纤中实现的宽带频率生成,可能会挑战基于节点的受大脑启发的硬件设计的传统方法,最终以最少的光学硬件需求实现节能、可扩展且可靠的计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ee4/10724387/9cc9a8922ea9/ADVS-10-2303835-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验