Suppr超能文献

利用基于智能体的模型和深度强化学习预测细胞迁移中的趋化性。

Leveraging agent-based models and deep reinforcement learning to predict taxis in cell migration.

作者信息

Camacho-Gomez Daniel, Sentiero Raffaele, Ventre Maurizio, Garcia-Aznar Jose Manuel

机构信息

Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.

Department of Chemical, Materials and Industrial Production Engineering. University of Naples Federico II, Naples, Italy.

出版信息

NPJ Syst Biol Appl. 2025 Aug 26;11(1):99. doi: 10.1038/s41540-025-00576-0.

Abstract

We present a novel computational framework that combines Agent-Based Modeling (ABM) with Reinforcement Learning (RL) using the Double Deep Q-Network (DDQN) algorithm to determine cellular behavior in response to environmental signals. With this approach, the model captures the transduction of environmental cues into biological responses directly from experimental observations, without explicitly predefining cell behavior. This enables the prediction of dynamic, environment-dependent cell behavior and offers a scalable and flexible alternative to traditional rule-based ABM. To illustrate its potential, we present an application to barotactic cell migration data from microfluidic device experiments, where cells adapt their migration behavior based on pressure gradients, demonstrating the model's ability to generalize across varying geometries and pressure configurations. Thus, this approach introduces a novel direction for modeling how cells sense and transduce environmental cues into biological behaviors.

摘要

我们提出了一种新颖的计算框架,该框架使用双深度Q网络(DDQN)算法将基于智能体的建模(ABM)与强化学习(RL)相结合,以确定细胞对环境信号的响应行为。通过这种方法,该模型直接从实验观察中捕捉环境线索到生物反应的转导过程,而无需明确预先定义细胞行为。这使得能够预测动态的、依赖环境的细胞行为,并为传统的基于规则的ABM提供了一种可扩展且灵活的替代方法。为了说明其潜力,我们展示了该框架在微流控设备实验中的气压诱导细胞迁移数据上的应用,其中细胞根据压力梯度调整其迁移行为,证明了该模型在不同几何形状和压力配置下的泛化能力。因此,这种方法为模拟细胞如何感知和将环境线索转导为生物行为引入了一个新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d623/12378232/77ec310260a3/41540_2025_576_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验