Haidar Jana, Nabos Patricia, Orlacchio Rosa, Hurtier Annabelle, de Gannes Florence Poulletier, Rambert Jérome, Cario-André Muriel, Moisan Francois, Rezvani Hamid-Reza, Lagroye Isabelle, Leveque Philippe, Arnaud-Cormos Delia, Percherancier Yann
Bordeaux University, CNRS, IMS Laboratory, UMR5218, 33400, Talence, France.
EPHE, Paris Sciences et Lettres Research University, 75006, Paris, France.
Sci Rep. 2025 Aug 25;15(1):31214. doi: 10.1038/s41598-025-15090-w.
The rapid deployment of fifth-generation (5G) wireless networks has raised societal concerns regarding potential biological effects, particularly on human skin, due to the use of higher carrier frequencies that penetrate tissue less deeply. Consequently, whether 5G-modulated radiofrequency (RF) electromagnetic fields (EMFs) at 3.5 GHz affect oxidative stress and DNA repair in skin cells remains an open question. Using genetically encoded Bioluminescence Resonance Energy Transfer (BRET)-based biosensors targeted to the cytoplasm and mitochondria, we assessed whether exposure of human fibroblasts to 5G RF-EMF at specific absorption rates (SAR) of 0.08 and 4 W/kg for 24 h could alter basal reactive oxygen species (ROS) levels or potentiate the effects of known ROS inducers, including H₂O₂, Kp372-1, and Antimycin A. We also evaluated whether pre-exposure to 5G RF-EMF could induce an adaptive response (AR), by modulating ROS production following a subsequent challenge with arsenic trioxide (As₂O₃). Additionally, we investigated the impact of combined RF-EMF and ultraviolet-B (UV-B) exposure on the formation and repair of cyclobutane pyrimidine dimer (CPD) lesions in HaCaT keratinocytes. Our results showed no significant effect of 5G RF-EMF exposure, either alone or in combination with chemical ROS inducers, on oxidative stress markers in either compartment. Likewise, RF-EMF exposure did not induce an adaptive response to oxidative challenge, nor did it alter the kinetics or the efficiency of CPD repair by the nucleotide excision repair (NER) pathway. These findings support the conclusion that the exposure to 5G RF-EMF at 3.5 GHz up to 4 W/kg does not induce oxidative stress or impair DNA repair efficiency in human skin cells, within the experimental conditions tested.
第五代(5G)无线网络的快速部署引发了社会对其潜在生物效应的担忧,特别是对人类皮肤的影响,因为其使用的较高载波频率穿透组织的深度较浅。因此,3.5GHz的5G调制射频(RF)电磁场(EMF)是否会影响皮肤细胞中的氧化应激和DNA修复仍是一个悬而未决的问题。我们使用靶向细胞质和线粒体的基于基因编码生物发光共振能量转移(BRET)的生物传感器,评估人类成纤维细胞在比吸收率(SAR)为0.08和4W/kg的条件下暴露于5G RF-EMF 24小时是否会改变基础活性氧(ROS)水平,或增强包括过氧化氢(H₂O₂)、Kp372-1和抗霉素A在内的已知ROS诱导剂的作用。我们还评估了预先暴露于5G RF-EMF是否会通过在随后用三氧化二砷(As₂O₃)进行刺激后调节ROS产生来诱导适应性反应(AR)。此外,我们研究了RF-EMF与紫外线B(UV-B)联合暴露对HaCaT角质形成细胞中环丁烷嘧啶二聚体(CPD)损伤形成和修复的影响。我们的结果表明,单独或与化学ROS诱导剂联合暴露于5G RF-EMF,对任一区室中的氧化应激标志物均无显著影响。同样,RF-EMF暴露未诱导对氧化应激刺激的适应性反应,也未改变核苷酸切除修复(NER)途径对CPD修复的动力学或效率。这些发现支持以下结论:在测试的实验条件下,暴露于高达4W/kg的3.5GHz 5G RF-EMF不会诱导人类皮肤细胞中的氧化应激或损害DNA修复效率。