Zheng Haowen, Xu Liangliang, Yan Qian, Liu Zonglin, Chen He, Lian Huanxin, Chen Yunxiang, Fei Teng, Hu Yiming, Xue Fuhua, Zhao Xu, Zhang Cong, Peng Qingyu, He Xiaodong
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, P. R. China.
Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, 150080, P. R. China.
Adv Sci (Weinh). 2025 Aug 25:e10243. doi: 10.1002/advs.202510243.
Introducing external substances to intercalate MXene (TiCT) or combining MXene with other inert materials to construct bilayer/multilayer structures is the current mainstream solution for improving actuation performance of MXene-based actuators. Possible issues include the degradation in mechanical and electrical properties of MXene, or the decrease in actuation performance or even structural damage of the actuator under frequent actuation. Besides, the structural and actuation performance stability of MXene-based actuators under high humidity environment also remain challenges. These issues limit the potential multifunctional integration and sustainable applications of MXene-based actuators. Here, an additive-free TiCT MXene actuator with multistimulus response, large deformation, programmability, and excellent stability under high humidity environment is fabricated. By sequentially assembling MXene nanosheets with significant size differences, additive-free MXene film with gradient structure is obtained. An innovative cyclic low-temperature annealing-rehydration technology is proposed, which achieves precise control of interlayer d-spacing, initial shape, and actuation behavior of the actuator, and significantly improves its structural and actuation performance stability under high humidity environment. This work not only provides a new paradigm for designing high-performance MXene-based actuators, but also deepens the fundamental understanding of interlayer engineering of 2D materials, laying the foundation for the development of next-generation sustainable intelligent materials and devices.
引入外部物质以嵌入MXene(TiCT)或将MXene与其他惰性材料结合以构建双层/多层结构是当前提高基于MXene的致动器驱动性能的主流解决方案。可能存在的问题包括MXene的机械和电气性能下降,或者在频繁驱动下致动器的驱动性能下降甚至结构损坏。此外,基于MXene的致动器在高湿度环境下的结构和驱动性能稳定性也仍然是挑战。这些问题限制了基于MXene的致动器潜在的多功能集成和可持续应用。在此,制备了一种具有多刺激响应、大变形、可编程性且在高湿度环境下具有优异稳定性的无添加剂TiCT MXene致动器。通过依次组装具有显著尺寸差异的MXene纳米片,获得了具有梯度结构的无添加剂MXene薄膜。提出了一种创新的循环低温退火-再水化技术,该技术实现了对致动器层间d间距、初始形状和驱动行为的精确控制,并显著提高了其在高湿度环境下的结构和驱动性能稳定性。这项工作不仅为设计高性能基于MXene的致动器提供了新范式,还深化了对二维材料层间工程的基本理解,为下一代可持续智能材料和器件的发展奠定了基础。