Mahato Manmatha, Kim Jaehwan, Lee Myung-Joon, Jo Seongjun, Kim Gwonmin, Nam Sanghee, Kim Ji-Seok, Nguyen Van Hiep, Garai Mousumi, Yoo Hyunjoon, Saatchi Daniel, Ullah Zakir, Ahn Chi Won, Gogotsi Yury, Oh Il-Kwon
National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
School of Mechanical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gyengsangbuk-do, Gumi-si, 39177, Republic of Korea.
Adv Mater. 2025 Aug;37(34):e2500479. doi: 10.1002/adma.202500479. Epub 2025 Jun 1.
The assembly of 2D nanosheets with other functional nanomaterials enables the creation of materials with unique property combinations that cannot be achieved in single-phase materials. In particular, a combination of inorganic and organic components provides a pathway to structures offering highly durable ionic and electronic conductivity simultaneously. Here, a controlled growth of amorphous metal-organic framework (aMOF) in the interlayer spaces of TiCT MXene for enhancing oxidation stability and accelerating fast ion transport is reported. The hydrophilic terminations of MXene provide support for the continuous growth of iron-based aMOF in the available interlayer 2D slits. Effective electronic interactions involving hydrogen bonding, coordination, and esterification in-between the open surfaces of MXene and nanoporous aMOF enhance the electrochemical strength of MXene-aMOF hybrid electrodes and allow the design of extremely durable electro-ionic soft actuators. The MXene-aMOF exhibits a fivefold increment in electroactuation compared to a conventional poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) soft actuator, with robust stability up to 50 000 cycles in open air. Using the MXene-aMOF soft actuator, a deformable morphing surface with reversibly adjustable shapes and patterns is demonstrated.
二维纳米片与其他功能性纳米材料的组装能够创造出具有独特性能组合的材料,而这些性能组合在单相材料中是无法实现的。特别是,无机和有机成分的结合为同时提供高耐久性离子和电子传导性的结构提供了一条途径。在此,报道了在TiCT MXene的层间空间中可控生长非晶态金属有机框架(aMOF)以增强氧化稳定性并加速快速离子传输。MXene的亲水性端基为铁基aMOF在可用的层间二维狭缝中持续生长提供了支撑。MXene开放表面与纳米多孔aMOF之间涉及氢键、配位和酯化的有效电子相互作用增强了MXene-aMOF混合电极的电化学强度,并使得能够设计出极其耐用的电离子软致动器。与传统的聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸盐)软致动器相比,MXene-aMOF的电致动性能提高了五倍,在空气中具有高达50000次循环的强大稳定性。利用MXene-aMOF软致动器,展示了一种具有可逆可调形状和图案的可变形变形表面。