Suppr超能文献

减轻L范数和总变差范数的缺点。

Mitigating the Drawbacks of the L Norm and the Total Variation Norm.

作者信息

Zeng Gengsheng L

机构信息

Department of Computer Science, Utah Valley University, Orem, UT 84058, USA.

出版信息

Axioms. 2025 Aug;14(8). doi: 10.3390/axioms14080605. Epub 2025 Aug 4.

Abstract

In compressed sensing, it is believed that the norm minimization is the best way to enforce a sparse solution. However, the norm is difficult to implement in a gradient-based iterative image reconstruction algorithm. The total variation (TV) norm minimization is considered a proper substitute for the norm minimization. This paper points out that the TV norm is not powerful enough to enforce a piecewise-constant image. This paper uses the limited-angle tomography to illustrate the possibility of using the norm to encourage a piecewise-constant image. However, one of the drawbacks of the norm is that its derivative is zero almost everywhere, making a gradient-based algorithm useless. Our novel idea is to replace the zero value of the norm derivative with a zero-mean random variable. Computer simulations show that the proposed norm minimization outperforms the TV minimization. The novelty of this paper is the introduction of some randomness in the gradient of the objective function when the gradient is zero. The quantitative evaluations indicate the improvements of the proposed method in terms of the structural similarity (SSIM) and the peak signal-to-noise ratio (PSNR).

摘要

在压缩感知中,人们认为 范数最小化是实现稀疏解的最佳方法。然而, 范数在基于梯度的迭代图像重建算法中难以实现。总变分(TV)范数最小化被认为是 范数最小化的合适替代方法。本文指出,TV 范数在强制生成分段常数图像方面不够强大。本文使用有限角度断层扫描来说明使用 范数来促进分段常数图像的可能性。然而, 范数的一个缺点是其导数几乎处处为零,这使得基于梯度的算法无用。我们的新想法是用零均值随机变量代替 范数导数的零值。计算机模拟表明,所提出的 范数最小化优于 TV 最小化。本文的新颖之处在于,当梯度为零时,在目标函数的梯度中引入了一些随机性。定量评估表明,所提出的方法在结构相似性(SSIM)和峰值信噪比(PSNR)方面有所改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418c/12377048/e4f3e58850f2/nihms-2104775-f0001.jpg

相似文献

1
Mitigating the Drawbacks of the L Norm and the Total Variation Norm.
Axioms. 2025 Aug;14(8). doi: 10.3390/axioms14080605. Epub 2025 Aug 4.
2
5
Multi-limited-angle spectral CT image reconstruction based on average image induced relative total variation model.
J Xray Sci Technol. 2025 May;33(3):637-650. doi: 10.1177/08953996251314771. Epub 2025 Mar 17.
6
2-D Stationary Wavelet Transform and 2-D Dual-Tree DWT for MRI Denoising.
Curr Med Imaging. 2025 Jul 7. doi: 10.2174/0115734056365765250630140748.
7
Locally linear transform based three-dimensional gradient -norm minimization for spectral CT reconstruction.
Med Phys. 2020 Oct;47(10):4810-4826. doi: 10.1002/mp.14420. Epub 2020 Aug 25.
8
Compressed sensing-based image reconstruction for discrete tomography with sparse view and limited angle geometries.
PLoS One. 2025 Jul 11;20(7):e0327666. doi: 10.1371/journal.pone.0327666. eCollection 2025.
10
Texture features-guided image reconstruction kernel method forF-FDG delayed PET imaging.
Phys Med Biol. 2025 Jul 17;70(14). doi: 10.1088/1361-6560/adee74.

本文引用的文献

1
Morphing from the TV-Norm to the -Norm.
Biomed J Sci Tech Res. 2024;55(2):46741-46747. doi: 10.26717/bjstr.2024.55.008665. Epub 2024 Feb 21.
2
Variable selection using a smooth information criterion for distributional regression models.
Stat Comput. 2023;33(3):71. doi: 10.1007/s11222-023-10204-8. Epub 2023 Apr 21.
4
Image Structure Retrieval via Minimization.
IEEE Trans Vis Comput Graph. 2018 Jul;24(7):2129-2139. doi: 10.1109/TVCG.2017.2711614. Epub 2017 Jun 2.
5
High Order Total Variation Minimization for Interior Tomography.
Inverse Probl. 2010 Jan 1;26(3):350131-3501329. doi: 10.1088/0266-5611/26/3/035013.
6
Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization.
Phys Med Biol. 2008 Sep 7;53(17):4777-807. doi: 10.1088/0031-9155/53/17/021. Epub 2008 Aug 13.
7
Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography.
IEEE Trans Med Imaging. 1987;6(3):228-38. doi: 10.1109/TMI.1987.4307831.
9
Maximum likelihood reconstruction for emission tomography.
IEEE Trans Med Imaging. 1982;1(2):113-22. doi: 10.1109/TMI.1982.4307558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验