Suppr超能文献

基于压缩感知的离散断层成像图像重建,适用于稀疏视图和有限角度几何结构。

Compressed sensing-based image reconstruction for discrete tomography with sparse view and limited angle geometries.

作者信息

Ali Haytham A, Rashed Essam A, Kudo Hiroyuki

机构信息

Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan.

Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt.

出版信息

PLoS One. 2025 Jul 11;20(7):e0327666. doi: 10.1371/journal.pone.0327666. eCollection 2025.

Abstract

This paper addresses the image reconstruction problem in discrete tomography, particularly under challenging imaging conditions such as sparse-view and limited-angle geometries commonly encountered in computed tomography (CT). These conditions often result in low-quality reconstructions due to insufficient projection data and incomplete angular coverage. To overcome these limitations, we propose a novel reconstruction framework that integrates compressed sensing (CS) with a parametric level set (PLS) method tailored for discrete images. The proposed approach leverages prior knowledge of discrete gray-level values and employs a parametric level set function to represent boundaries in both binary and multi-gray-level images. Unlike previous methods, our PLS is constructed using a dictionary of basis functions composed of single-scale or multiscale Gaussian functions. Reconstruction is formulated as 𝚤1-norm minimization of Gaussian coefficients, promoting sparsity. We assess the method's robustness by introducing varying levels of Gaussian noise into the projection data under both sparse-view and limited-angle conditions. Quantitative evaluations using PSNR, SSIM, and Dice coefficients demonstrate that the proposed method preserves boundary sharpness and accurately reconstructs discrete intensity levels, even in highly undersampled and noisy scenarios. Simulations and experiments on both synthetic and real CT data confirm that the proposed approach consistently outperforms conventional methods in terms of reconstruction quality, boundary accuracy, and noise robustness.

摘要

本文探讨离散断层扫描中的图像重建问题,特别是在具有挑战性的成像条件下,如计算机断层扫描(CT)中常见的稀疏视图和有限角度几何条件。由于投影数据不足和角度覆盖不完整,这些条件常常导致重建质量低下。为克服这些限制,我们提出一种新颖的重建框架,该框架将压缩感知(CS)与专为离散图像量身定制的参数水平集(PLS)方法相结合。所提出的方法利用离散灰度值的先验知识,并采用参数水平集函数来表示二值图像和多灰度级图像中的边界。与先前方法不同,我们的PLS是使用由单尺度或多尺度高斯函数组成的基函数字典构建的。重建被公式化为高斯系数的𝚤1范数最小化,以促进稀疏性。我们通过在稀疏视图和有限角度条件下向投影数据中引入不同水平的高斯噪声来评估该方法的鲁棒性。使用PSNR、SSIM和Dice系数进行的定量评估表明,即使在高度欠采样和有噪声的情况下,所提出的方法也能保持边界清晰度并准确重建离散强度水平。对合成CT数据和真实CT数据的模拟和实验证实,所提出的方法在重建质量、边界精度和噪声鲁棒性方面始终优于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/050c/12250546/1478c0b5d00b/pone.0327666.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验