Suppr超能文献

一种用于基于显著性的图像质量评估的生物启发式深度学习框架。

A Bioinspired Deep Learning Framework for Saliency-Based Image Quality Assessment.

作者信息

Wang Huasheng, Ma Yueran, Tan Hongchen, Liu Xiaochang, Chen Ying, Liu Hantao

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Aug 26;PP. doi: 10.1109/TNNLS.2025.3598716.

Abstract

Advancements in deep learning have led to significant progress in no-reference (NR) image quality assessment (NR-IQA) for evaluating the perceived quality of digital images without relying on a reference. However, existing NR-IQA models remain suboptimal in handling complex and diverse natural images. Visual saliency constitutes a critical element for enhancing the reliability of NR-IQA, but the optimal use of saliency in deep learning-based NR-IQA has not heretofore been significantly explored. In this article, we present a novel method for integrating saliency in NR-IQA, which is motivated by the saliency-based visual search mechanism that different parts of the visual input are visited by the focus of attention (FOA) in the order of decreasing saliency. By dividing saliency into the high and low levels of FOA, we build a bioinspired deep neural network-BioSIQNet-based on a multitask learning (MTL) framework. The network architecture consists of two saliency-specific tasks and one primary image quality assessment (IQA) task. The low and high saliency (HS) are separately encoded and integrated into the early and deeper layers of the IQA network, respectively, analogous to the hierarchical processing in the visual cortex of the brain that allocates low attentional resources to process the simple patterns and high resources to learn intricate representations. We demonstrate that leveraging the synergy between visual attention and image quality perception and joint learning of these interconnected visual tasks can enhance the overall learning capabilities of the primary IQA model. Experiments validate the effectiveness of our proposed BioSIQNet for NR-IQA.

摘要

深度学习的进步已在无参考(NR)图像质量评估(NR-IQA)方面取得了显著进展,该评估用于在不依赖参考的情况下评估数字图像的感知质量。然而,现有的NR-IQA模型在处理复杂多样的自然图像时仍存在不足。视觉显著性是提高NR-IQA可靠性的关键因素,但基于深度学习的NR-IQA中显著性的最佳应用尚未得到充分探索。在本文中,我们提出了一种在NR-IQA中整合显著性的新方法,其灵感来源于基于显著性的视觉搜索机制,即视觉输入的不同部分会按照显著性递减的顺序被注意力焦点(FOA)访问。通过将显著性划分为FOA的高低两个层次,我们基于多任务学习(MTL)框架构建了一个受生物启发的深度神经网络——BioSIQNet。该网络架构由两个特定于显著性的任务和一个主要的图像质量评估(IQA)任务组成。低显著性和高显著性(HS)分别被编码并整合到IQA网络的早期和更深层,类似于大脑视觉皮层中的分层处理,即分配低注意力资源来处理简单模式,分配高资源来学习复杂表示。我们证明,利用视觉注意力和图像质量感知之间的协同作用以及这些相互关联的视觉任务的联合学习,可以增强主要IQA模型的整体学习能力。实验验证了我们提出的用于NR-IQA的BioSIQNet的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验