Coube-Sisqueille Sébastien, Banerjee Sudipto, Liquet Benoît
Laboratoire de Mathématiques et de leurs Applications, Université de Pau et des Pays de l'Adour, E2S-UPPA, Pau, France.
Department of Biostatistics, University of California, Los Angeles, United States of America.
J Comput Graph Stat. 2025 Jul 30. doi: 10.1080/10618600.2025.2516020.
Building spatial process models that capture nonstationary behavior while delivering computationally efficient inference is challenging. Nonstationary spatially varying kernels (see, e.g., Paciorek, 2003) offer flexibility and richness, but computation is impeded by high-dimensional parameter spaces resulting from spatially varying process parameters. Matters are exacerbated if the number of locations recording measurements is massive. With limited theoretical tractability, obviating computational bottlenecks requires synergy between model construction and algorithm development. We build a class of scalable nonstationary spatial process models using spatially varying covariance kernels. We implement a Bayesian modeling framework using Hybrid Monte Carlo with nested interweaving. We conduct experiments on synthetic data sets to explore model selection and parameter identifiability, and assess inferential improvements accrued from nonstationary modeling. We illustrate strengths and pitfalls with a data set on remote sensed normalized difference vegetation index.
构建能够捕捉非平稳行为同时实现高效计算推理的空间过程模型具有挑战性。非平稳的空间变化核(例如,见Paciorek,2003)提供了灵活性和丰富性,但由于空间变化的过程参数导致高维参数空间,计算受到阻碍。如果记录测量值的位置数量巨大,问题会更加严重。由于理论上的可处理性有限,消除计算瓶颈需要模型构建和算法开发之间的协同作用。我们使用空间变化的协方差核构建了一类可扩展的非平稳空间过程模型。我们使用嵌套交织的混合蒙特卡罗实现了一个贝叶斯建模框架。我们在合成数据集上进行实验,以探索模型选择和参数可识别性,并评估非平稳建模带来的推理改进。我们用一个关于遥感归一化差异植被指数的数据集说明了优势和陷阱。