Suppr超能文献

高维贝叶斯地质统计学

High-Dimensional Bayesian Geostatistics.

作者信息

Banerjee Sudipto

机构信息

UCLA Department of Biostatistics, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772.

出版信息

Bayesian Anal. 2017 Jun;12(2):583-614. doi: 10.1214/17-BA1056R. Epub 2017 May 16.

Abstract

With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ floating point operations (flops), where the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.

摘要

随着地理信息系统(GIS)功能的不断增强以及软件的用户友好化,如今统计学家经常会遇到包含大量空间位置和时间点观测值的地理参考数据。在过去十年中,分层时空过程模型已成为研究人员广泛使用的统计工具,以更好地理解空间和时间变异性的复杂本质。然而,拟合分层时空模型通常涉及昂贵的矩阵计算,其复杂度随着空间位置和时间点数量的立方级增加。这使得此类模型对于大数据集不可行。本文重点综述了两种构建定义明确且高度可扩展的时空随机过程的方法。这两种过程都可以用作时空随机场的“先验”。第一种方法构建一个在低维子空间上运行的低秩过程。第二种方法构建一个最近邻高斯过程(NNGP),该过程确保其有限实现的精度矩阵稀疏。这两种过程都可以作为嵌入丰富分层建模框架内的可扩展先验,以进行全贝叶斯推断。这些方法可以描述为针对大型时空数据集的基于模型的解决方案。这些模型确保算法复杂度具有~浮点运算(flops),其中 为空间位置的数量(每次迭代)。我们比较了这些方法,并对它们的方法基础提供了一些见解。

相似文献

1
High-Dimensional Bayesian Geostatistics.高维贝叶斯地质统计学
Bayesian Anal. 2017 Jun;12(2):583-614. doi: 10.1214/17-BA1056R. Epub 2017 May 16.
4
On nearest-neighbor Gaussian process models for massive spatial data.关于海量空间数据的最近邻高斯过程模型。
Wiley Interdiscip Rev Comput Stat. 2016 Sep-Oct;8(5):162-171. doi: 10.1002/wics.1383. Epub 2016 Aug 4.
5
Gaussian predictive process models for large spatial data sets.用于大型空间数据集的高斯预测过程模型。
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x.

引用本文的文献

5
Modeling Multivariate Spatial Dependencies Using Graphical Models.使用图形模型对多元空间依赖性进行建模。
N Engl J Stat Data Sci. 2023 Sep;1(2):283-295. doi: 10.51387/23-nejsds47. Epub 2023 Sep 6.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
9
10
Gaussian predictive process models for large spatial data sets.用于大型空间数据集的高斯预测过程模型。
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验