Finley Andrew O, Datta Abhirup, Cook Bruce C, Morton Douglas C, Andersen Hans E, Banerjee Sudipto
Michigan State University.
Johns Hopkins University.
J Comput Graph Stat. 2019;28(2):401-414. doi: 10.1080/10618600.2018.1537924. Epub 2019 Apr 1.
We consider alternate formulations of recently proposed hierarchical Nearest Neighbor Gaussian Process (NNGP) models (Datta et al., 2016a) for improved convergence, faster computing time, and more robust and reproducible Bayesian inference. Algorithms are defined that improve CPU memory management and exploit existing high-performance numerical linear algebra libraries. Computational and inferential benefits are assessed for alternate NNGP specifications using simulated datasets and remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska. The resulting data product is the first statistically robust map of forest canopy for the TIU.
我们考虑了最近提出的分层最近邻高斯过程(NNGP)模型(达塔等人,2016年a)的替代公式,以实现更好的收敛性、更快的计算时间以及更稳健和可重复的贝叶斯推理。我们定义了一些算法,这些算法改进了CPU内存管理,并利用了现有的高性能数值线性代数库。使用模拟数据集以及在美国阿拉斯加内陆偏远地区的美国森林服务局塔纳纳清查单元(TIU)收集的遥感光探测与测距(LiDAR)数据,对替代NNGP规范的计算和推理优势进行了评估。所得的数据产品是TIU的第一张具有统计稳健性的森林冠层地图。