Suppr超能文献

一种使用快速圆变换和Chan-Vese分割进行视盘定位的新方法。

A novel method for optic disc localization using fast circlet transform and Chan-Vese segmentation.

作者信息

Gowthaman S, Das Abhishek

机构信息

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

出版信息

Sci Rep. 2025 Aug 26;15(1):31399. doi: 10.1038/s41598-025-11257-7.

Abstract

Accurate localization and segmentation of the optic disc (OD) are considered crucial for the early detection of ophthalmic diseases such as glaucoma and diabetic retinopathy. Challenges such as image quality variability, high background noise, and insufficient edge information are often encountered by existing methods. To address these issues, an adaptive framework is proposed in which Fast Circlet Transformation (FCT) is combined with entropy-based features derived from retinal blood vessels for robust OD localization. Minkowski weighted K-means clustering is utilized to dynamically assess feature importance, thereby enhancing resilience to dataset variations. Following localization, partial differential equation-based image inpainting is employed for blood vessel removal, and OD segmentation is refined using the Chan-Vese active contour model. The method's localization efficacy is demonstrated through extensive evaluations across multiple public datasets (DRISHTI-GS, DRIONS-DB, IDRID, and ORIGA), and segmentation performance metrics, including Dice coefficients of 0.94-0.95 and Jaccard indices of 0.9, are achieved on the ORIGA and DRISHTI-GS datasets. Through these results, the robustness and generalizability of the proposed method for clinical applications in retinal image analysis are highlighted.

摘要

视盘(OD)的精确定位和分割对于青光眼和糖尿病视网膜病变等眼科疾病的早期检测至关重要。现有方法常常面临图像质量变化、背景噪声高以及边缘信息不足等挑战。为了解决这些问题,提出了一种自适应框架,其中快速圆变换(FCT)与从视网膜血管导出的基于熵的特征相结合,用于稳健的视盘定位。利用闵可夫斯基加权K均值聚类动态评估特征重要性,从而增强对数据集变化的适应能力。定位之后,采用基于偏微分方程的图像修复方法去除血管,并使用Chan-Vese活动轮廓模型对视盘分割进行优化。通过在多个公共数据集(DRISHTI-GS、DRIONS-DB、IDRID和ORIGA)上进行广泛评估,证明了该方法的定位效果,并且在ORIGA和DRISHTI-GS数据集上实现了包括0.94 - 0.95的骰子系数和0.9的杰卡德指数在内的分割性能指标。通过这些结果,突出了所提出方法在视网膜图像分析临床应用中的稳健性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0427/12381056/53bcdd291eda/41598_2025_11257_Fig1_HTML.jpg

相似文献

1
A novel method for optic disc localization using fast circlet transform and Chan-Vese segmentation.
Sci Rep. 2025 Aug 26;15(1):31399. doi: 10.1038/s41598-025-11257-7.
2
.
Int Ophthalmol. 2025 Jun 27;45(1):266. doi: 10.1007/s10792-025-03602-6.
3
Enhanced glaucoma detection using U-Net and U-Net+ architectures using deep learning techniques.
Photodiagnosis Photodyn Ther. 2025 Aug;54:104621. doi: 10.1016/j.pdpdt.2025.104621. Epub 2025 Jun 6.
5
Unsupervised domain adaptation multi-level adversarial learning-based crossing-domain retinal vessel segmentation.
Comput Biol Med. 2024 Aug;178:108759. doi: 10.1016/j.compbiomed.2024.108759. Epub 2024 Jun 24.
6
An accurate unsupervised extraction of retinal vasculature using curvelet transform and classical morphological operators.
Comput Biol Med. 2024 Aug;178:108801. doi: 10.1016/j.compbiomed.2024.108801. Epub 2024 Jun 25.
7
VascX Models: Deep Ensembles for Retinal Vascular Analysis From Color Fundus Images.
Transl Vis Sci Technol. 2025 Jul 1;14(7):19. doi: 10.1167/tvst.14.7.19.
10
TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation.
Comput Biol Med. 2024 Aug;178:108773. doi: 10.1016/j.compbiomed.2024.108773. Epub 2024 Jun 25.

本文引用的文献

2
Dynamic Statistical Attention-based lightweight model for Retinal Vessel Segmentation: DyStA-RetNet.
Comput Biol Med. 2025 Mar;186:109592. doi: 10.1016/j.compbiomed.2024.109592. Epub 2024 Dec 28.
4
Optic disc and cup segmentation for glaucoma detection using Attention U-Net incorporating residual mechanism.
PeerJ Comput Sci. 2024 Mar 28;10:e1941. doi: 10.7717/peerj-cs.1941. eCollection 2024.
5
TUNet and domain adaptation based learning for joint optic disc and cup segmentation.
Comput Biol Med. 2023 Sep;163:107209. doi: 10.1016/j.compbiomed.2023.107209. Epub 2023 Jun 28.
6
Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation.
Sensors (Basel). 2023 May 11;23(10):4668. doi: 10.3390/s23104668.
7
Retinal image enhancement based on color dominance of image.
Sci Rep. 2023 May 3;13(1):7172. doi: 10.1038/s41598-023-34212-w.
8
DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image.
Artif Intell Med. 2021 Jan;111:102001. doi: 10.1016/j.artmed.2020.102001. Epub 2020 Dec 13.
10
A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model.
Med Biol Eng Comput. 2020 Jan;58(1):25-37. doi: 10.1007/s11517-019-02032-8. Epub 2019 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验