Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
Zhejiang University, Hangzhou, 310027, Zhejiang, China.
Comput Biol Med. 2023 Sep;163:107209. doi: 10.1016/j.compbiomed.2023.107209. Epub 2023 Jun 28.
Glaucoma is a chronic disorder that harms the optic nerves and causes irreversible blindness. The calculation of optic cup (OC) to optic disc (OD) ratio plays an important role in the primary screening and diagnosis of glaucoma. Thus, automatic and precise segmentations of OD and OC is highly preferable. Recently, deep neural networks demonstrate remarkable progress in the OD and OC segmentation, however, they are severely hindered in generalizing across different scanners and image resolution. In this work, we propose a novel domain adaptation-based framework to mitigate the performance degradation in OD and OC segmentation. We first devise an effective transformer-based segmentation network as a backbone to accurately segment the OD and OC regions. Then, to address the issue of domain shift, we introduce domain adaptation into the learning paradigm to encourage domain-invariant features. Since the segmentation-based domain adaptation loss is insufficient for capturing segmentation details, we further propose an auxiliary classifier to enable the discrimination on segmentation details. Exhaustive experiments on three public retinal fundus image datasets, i.e., REFUGE, Drishti-GS and RIM-ONE-r3, demonstrate our superior performance on the segmentation of OD and OC. These results suggest that our proposal has great potential to be an important component for an automated glaucoma screening system.
青光眼是一种慢性疾病,会损害视神经并导致不可逆转的失明。视杯(OC)与视盘(OD)比值的计算在青光眼的初步筛查和诊断中起着重要作用。因此,OD 和 OC 的自动和精确分割是非常可取的。最近,深度神经网络在 OD 和 OC 分割方面取得了显著的进展,然而,它们在跨不同扫描仪和图像分辨率的泛化方面受到严重阻碍。在这项工作中,我们提出了一种基于领域自适应的新框架,以减轻 OD 和 OC 分割中的性能下降。我们首先设计了一种有效的基于变压器的分割网络作为骨干,以准确分割 OD 和 OC 区域。然后,为了解决域转移问题,我们将域自适应引入学习范例中,以鼓励域不变特征。由于基于分割的域自适应损失不足以捕获分割细节,我们进一步提出了一个辅助分类器来实现对分割细节的区分。在 REFUGE、Drishti-GS 和 RIM-ONE-r3 三个公共视网膜眼底图像数据集上的大量实验表明,我们在 OD 和 OC 分割方面的性能优越。这些结果表明,我们的建议具有成为自动化青光眼筛查系统的重要组成部分的巨大潜力。