Suppr超能文献

DRNet:糖尿病视网膜病变图像中视盘和黄斑中心凹的分割与定位

DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image.

作者信息

Hasan Md Kamrul, Alam Md Ashraful, Elahi Md Toufick E, Roy Shidhartho, Martí Robert

机构信息

Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh.

Computer Vision and Robotics Institute, University of Girona, Spain.

出版信息

Artif Intell Med. 2021 Jan;111:102001. doi: 10.1016/j.artmed.2020.102001. Epub 2020 Dec 13.

Abstract

BACKGROUND AND OBJECTIVE

In modern ophthalmology, automated Computer-aided Screening Tools (CSTs) are crucial non-intrusive diagnosis methods, where an accurate segmentation of Optic Disc (OD) and localization of OD and Fovea centers are substantial integral parts. However, designing such an automated tool remains challenging due to small dataset sizes, inconsistency in spatial, texture, and shape information of the OD and Fovea, and the presence of different artifacts.

METHODS

This article proposes an end-to-end encoder-decoder network, named DRNet, for the segmentation and localization of OD and Fovea centers. In our DRNet, we propose a skip connection, named residual skip connection, for compensating the spatial information lost due to pooling in the encoder. Unlike the earlier skip connection in the UNet, the proposed skip connection does not directly concatenate low-level feature maps from the encoder's beginning layers with the corresponding same scale decoder. We validate DRNet using different publicly available datasets, such as IDRiD, RIMONE, DRISHTI-GS, and DRIVE for OD segmentation; IDRiD and HRF for OD center localization; and IDRiD for Fovea center localization.

RESULTS

The proposed DRNet, for OD segmentation, achieves mean Intersection over Union (mIoU) of 0.845, 0.901, 0.933, and 0.920 for IDRiD, RIMONE, DRISHTI-GS, and DRIVE, respectively. Our OD segmentation result, in terms of mIoU, outperforms the state-of-the-art results for IDRiD and DRIVE datasets, whereas it outperforms state-of-the-art results concerning mean sensitivity for RIMONE and DRISHTI-GS datasets. The DRNet localizes the OD center with mean Euclidean Distance (mED) of 20.23 and 13.34 pixels, respectively, for IDRiD and HRF datasets; it outperforms the state-of-the-art by 4.62 pixels for IDRiD dataset. The DRNet also successfully localizes the Fovea center with mED of 41.87 pixels for the IDRiD dataset, outperforming the state-of-the-art by 1.59 pixels for the same dataset.

CONCLUSION

As the proposed DRNet exhibits excellent performance even with limited training data and without intermediate intervention, it can be employed to design a better-CST system to screen retinal images. Our source codes, trained models, and ground-truth heatmaps for OD and Fovea center localization will be made publicly available upon publication at GitHub..

摘要

背景与目的

在现代眼科中,自动化计算机辅助筛查工具(CST)是至关重要的非侵入性诊断方法,其中视盘(OD)的精确分割以及OD和黄斑中心的定位是重要的组成部分。然而,由于数据集规模小、OD和黄斑的空间、纹理和形状信息不一致以及存在不同伪影,设计这样的自动化工具仍然具有挑战性。

方法

本文提出了一种名为DRNet的端到端编码器 - 解码器网络,用于OD和黄斑中心的分割与定位。在我们的DRNet中,我们提出了一种跳跃连接,称为残差跳跃连接,用于补偿编码器中池化操作导致的空间信息损失。与U-Net中早期的跳跃连接不同,所提出的跳跃连接不会直接将编码器起始层的低级特征图与相应相同尺度的解码器进行拼接。我们使用不同的公开可用数据集对DRNet进行验证,如用于OD分割的IDRiD、RIMONE、DRISHTI-GS和DRIVE;用于OD中心定位的IDRiD和HRF;以及用于黄斑中心定位的IDRiD。

结果

所提出的DRNet用于OD分割时,在IDRiD、RIMONE、DRISHTI-GS和DRIVE数据集上分别实现了0.845、0.901、0.933和0.920的平均交并比(mIoU)。我们的OD分割结果在mIoU方面优于IDRiD和DRIVE数据集的现有技术结果,而在平均敏感度方面优于RIMONE和DRISHTI-GS数据集的现有技术结果。DRNet在IDRiD和HRF数据集上分别以平均欧几里得距离(mED)为20.23和13.34像素定位OD中心;在IDRiD数据集上比现有技术优4.62像素。DRNet还在IDRiD数据集上以41.87像素的mED成功定位黄斑中心,在同一数据集上比现有技术优1.59像素。

结论

由于所提出的DRNet即使在训练数据有限且无需中间干预的情况下也表现出优异性能,因此可用于设计更好的CST系统来筛查视网膜图像。我们用于OD和黄斑中心定位的源代码、训练模型以及真实热图将在发表后在GitHub上公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验