Yan Zhenwei, Wei Zihao, Tan Zhaojun, Guo Shuaihui, Fang Zhipeng, Wang Wen, Li Gang, Yuan Xianjie, Tang Mingqi, Feng Zaiqiang
School of Mechanical Engineering, North China University of Water Resources and Electric Power Zhengzhou 450011 PR China
School of Materials Science and Engineering, North China University of Water Resources and Electric Power Zhengzhou 450011 PR China.
RSC Adv. 2025 Aug 22;15(36):29925-29936. doi: 10.1039/d5ra04599a. eCollection 2025 Aug 18.
The oxygen evolution reaction (OER) is hindered by the sluggish kinetics, high costs, and poor stability of noble metal catalysts (, RuO), as well as low atomic utilization and limited accessibility of active sites in transition metal oxide catalysts. To address these challenges, this study develops a core-shell structured WO@Co-CoPBA heterostructure as an efficient OER electrocatalyst. Co-CoPBA nanocubes are hydrothermally synthesized and then loaded with WO nanorods, followed by gradient annealing under N atmosphere (optimized at 500 °C) to form a CoO@WO heterojunction. Characterization and electrochemical evaluations reveal that annealing at 500 °C induces topological reconstruction of Co-CoPBA into porous CoO and graphene cores, Co sites in CoO serve as the catalytic active centers, forming a strong electronic coupling interface with the WO shell. This architecture significantly enhances the density of active sites (electrochemically active surface area of 3.8 cm) and charge transfer efficiency (Tafel slope of 55.12 mV dec). The catalyst delivers an overpotential of 315 mV at 100 mA cm in 1 M KOH, outperforming commercial benchmark catalyst RuO (372 mV). It exhibits exceptional stability with almost no performance decay after 100 h. Density functional theory (DFT) calculations demonstrate that interfacial electronic restructuring modulates the d-band center, optimizing the adsorption Gibbs free energy of OOH* intermediates and thereby improving intrinsic catalytic activity. This work provides an effective interface engineering strategy for designing high-performance, low-cost transition metal-based electrocatalysts.
析氧反应(OER)受到贵金属催化剂(如RuO)动力学缓慢、成本高昂和稳定性差的阻碍,以及过渡金属氧化物催化剂中原子利用率低和活性位点可及性有限的影响。为应对这些挑战,本研究开发了一种核壳结构的WO@Co-CoPBA异质结构作为高效的OER电催化剂。水热合成Co-CoPBA纳米立方体,然后负载WO纳米棒,随后在N气氛下进行梯度退火(在500°C优化)以形成CoO@WO异质结。表征和电化学评估表明,在500°C退火会诱导Co-CoPBA拓扑重构为多孔CoO和石墨烯核,CoO中的Co位点作为催化活性中心,与WO壳形成强电子耦合界面。这种结构显著提高了活性位点密度(电化学活性表面积为3.8 cm)和电荷转移效率(塔菲尔斜率为55.12 mV dec)。该催化剂在1 M KOH中,在100 mA cm下的过电位为315 mV,优于商业基准催化剂RuO(372 mV)。它表现出卓越的稳定性,100 h后几乎没有性能衰减。密度泛函理论(DFT)计算表明,界面电子重构调节d带中心,优化OOH*中间体的吸附吉布斯自由能,从而提高本征催化活性。这项工作为设计高性能、低成本的过渡金属基电催化剂提供了一种有效的界面工程策略。