Belder Nevin, Charyyeva Sulgun, Abaci Oruc Edibe Ece, Kawalya Hakiimu, Sahar Namood-E, Omidvar Nader, Savas Berna, Ensari Arzu, Ozdag Hilal
Ankara University Biotechnology Institute, Ankara, Turkey.
Comsats University, Institute of Information Technology, Islamabad, Pakistan.
PeerJ. 2025 Aug 20;13:e19852. doi: 10.7717/peerj.19852. eCollection 2025.
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, necessitating accurate and robust predictive approaches to assist oncologists with prognosis prediction and therapeutic decision-making in clinical practice. Here, we aimed to identify key genes involved in colorectal cancer pathology and develop a model for prognosis prediction and guide therapeutic decisions in CRC patients. We profiled 49 matched tumour and normal formalin-fixed paraffin-embedded (FFPE) samples using Affymetrix HGU133-X3P arrays and identified 845 differentially expressed genes (FDR ≤ 0.001, fold change ≥2), predominantly enriched in the extracellular matrix (ECM)-receptor interaction pathway. The integrative analysis of our data with publicly available mRNA and miRNA datasets, including their differentially expressed gene analyses, identified four overexpressed genes in the ECM-receptor interaction pathway as key regulators of human CRC development and progression. These four genes were independently validated for their differential expression and association with prognosis in a newly collected CRC cohort and publicly available datasets. A prognostic risk score was developed using these genes, with patient stages weighted by multivariate Cox regression coefficients to stratify patients into low-risk and high-risk groups, showing significantly poorer overall survival (OS) in the high-risk group. In conclusion, our risk assessment model exhibits strong potential for predicting poor survival and unfavorable clinicopathological features in CRC patients, offering valuable insights for personalised management strategies.
结直肠癌(CRC)是全球癌症相关死亡的主要原因之一,因此需要准确且可靠的预测方法来帮助肿瘤学家在临床实践中进行预后预测和治疗决策。在此,我们旨在识别参与结直肠癌病理过程的关键基因,并开发一种模型用于预后预测并指导CRC患者的治疗决策。我们使用Affymetrix HGU133-X3P阵列对49对匹配的肿瘤和正常福尔马林固定石蜡包埋(FFPE)样本进行了分析,鉴定出845个差异表达基因(FDR≤0.001,倍数变化≥2),主要富集于细胞外基质(ECM)-受体相互作用途径。我们将自己的数据与公开可用的mRNA和miRNA数据集进行综合分析,包括对它们差异表达基因的分析,确定了ECM-受体相互作用途径中的四个过表达基因是人类CRC发生和进展的关键调节因子。在一个新收集的CRC队列和公开可用的数据集中,对这四个基因的差异表达及其与预后的关联进行了独立验证。使用这些基因开发了一个预后风险评分,通过多变量Cox回归系数对患者分期进行加权,将患者分为低风险和高风险组,高风险组的总生存期(OS)明显更差。总之,我们的风险评估模型在预测CRC患者不良生存和不利临床病理特征方面具有强大潜力,为个性化管理策略提供了有价值的见解。