Suppr超能文献

用于松针营养预测的重建高光谱成像

Reconstructed hyperspectral imaging for nutrient prediction in pine needles.

作者信息

Li Yuanhang, Du Jun, Zeng Chuangjie, Wu Yongshan, Chen Junxian, Long Teng, Long Yongbing, Lan Yubin, Che Xiaoliang, Liu Tianyi, Zhao Jing

机构信息

College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, China.

National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, Guangzhou, China.

出版信息

Front Plant Sci. 2025 Aug 11;16:1630758. doi: 10.3389/fpls.2025.1630758. eCollection 2025.

Abstract

INTRODUCTION

Hyperspectral imaging (HSI) is a powerful, non-destructive technology that enables precise analysis of plant nutrient content, which can enhance forestry productivity and quality. However, its high cost and complexity hinder practical field applications.

METHODS

To overcome these limitations, we propose a deep-learning-based method to reconstruct hyperspectral images from RGB inputs for in situ needle nutrient prediction. The model reconstructs hyperspectral images with a spectral range of 400-1000 nm (3.4 nm resolution) and spatial resolution of 768×768. Nutrient prediction is performed using spectral data combined with competitive adaptive reweighted sampling (CARS) and partial least squares regression (PLSR).

RESULTS

The reconstructed hyperspectral images enabled accurate prediction of needle nitrogen, phosphorus, and potassium content, with coefficients of determination (R²) of 0.8523, 0.7022, and 0.8087, respectively. These results are comparable to those obtained using original hyperspectral data.

DISCUSSION

The proposed approach reduces the cost and complexity of traditional HSI systems while maintaining high prediction accuracy. It facilitates efficient in situ nutrient detection and offers a promising tool for sustainable forestry development.

摘要

引言

高光谱成像(HSI)是一种强大的无损技术,能够精确分析植物养分含量,从而提高林业生产力和质量。然而,其高成本和复杂性阻碍了实际的现场应用。

方法

为了克服这些限制,我们提出了一种基于深度学习的方法,用于从RGB输入重建高光谱图像,以进行原位针叶养分预测。该模型重建的高光谱图像光谱范围为400 - 1000 nm(分辨率为3.4 nm),空间分辨率为768×768。使用结合了竞争性自适应重加权采样(CARS)和偏最小二乘回归(PLSR)的光谱数据进行养分预测。

结果

重建的高光谱图像能够准确预测针叶中的氮、磷和钾含量,决定系数(R²)分别为0.8523、0.7022和0.8087。这些结果与使用原始高光谱数据获得的结果相当。

讨论

所提出的方法降低了传统HSI系统的成本和复杂性,同时保持了较高的预测精度。它有助于高效的原位养分检测,并为可持续林业发展提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1764/12375653/4e9fc109fe21/fpls-16-1630758-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验