Suppr超能文献

使用深度外部和内部学习的编码高光谱图像重建

Coded Hyperspectral Image Reconstruction Using Deep External and Internal Learning.

作者信息

Fu Ying, Zhang Tao, Wang Lizhi, Huang Hua

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3404-3420. doi: 10.1109/TPAMI.2021.3059911. Epub 2022 Jun 3.

Abstract

To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, coded hyperspectral imaging systems have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding coded image is an ill-posed inverse problem, and learning accurate prior of HSI is essential to solve this inverse problem. In this paper, we present an effective convolutional neural network (CNN) based method for coded HSI reconstruction, which learns the deep prior from the external dataset as well as the internal information of input coded image with spatial-spectral constraint. Specifically, we first develop a CNN-based channel attention reconstruction network to effectively exploit the spatial-spectral correlation of the HSI. Then, the reconstruction network is learned by leveraging an arbitrary external hyperspectral dataset to exploit the general spatial-spectral correlation under adversarial loss. Finally, we customize the network by internal learning with spatial-spectral constraint and total variation regularization for each coded image, which can make use of the internal imaging model to learn specific prior for current desirable image and effectively avoids overfitting. Experimental results using both synthetic data and real images show that our method outperforms the state-of-the-art methods on several popular coded hyperspectral imaging systems under both comprehensive quantitative metrics and perceptive quality.

摘要

为了解决传统高光谱相机经常面临的低空间和/或时间分辨率问题,编码高光谱成像系统最近受到了更多关注。从其相应的编码图像中恢复高光谱图像(HSI)是一个不适定的逆问题,学习HSI的准确先验对于解决这个逆问题至关重要。在本文中,我们提出了一种基于有效卷积神经网络(CNN)的编码HSI重建方法,该方法从外部数据集以及具有空间光谱约束的输入编码图像的内部信息中学习深度先验。具体来说,我们首先开发了一个基于CNN的通道注意力重建网络,以有效地利用HSI的空间光谱相关性。然后,通过利用任意外部高光谱数据集来学习重建网络,以在对抗损失下利用一般的空间光谱相关性。最后,我们通过对每个编码图像进行具有空间光谱约束和总变差正则化的内部学习来定制网络,这可以利用内部成像模型来学习当前期望图像的特定先验,并有效地避免过拟合。使用合成数据和真实图像的实验结果表明,在综合定量指标和感知质量方面,我们的方法在几个流行的编码高光谱成像系统上优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验