Suppr超能文献

基于 RGB 到高光谱成像的计算光谱重建方法综述。

A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging.

机构信息

School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100039, China.

School of Computer Science and Technology, Xidian University, Xi'an, 710071, China.

出版信息

Sci Rep. 2022 Jul 13;12(1):11905. doi: 10.1038/s41598-022-16223-1.

Abstract

Hyperspectral imaging enables many versatile applications for its competence in capturing abundant spatial and spectral information, which is crucial for identifying substances. However, the devices for acquiring hyperspectral images are typically expensive and very complicated, hindering the promotion of their application in consumer electronics, such as daily food inspection and point-of-care medical screening, etc. Recently, many computational spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from widely available RGB images. These reconstruction methods can exclude the usage of burdensome spectral camera hardware while keeping a high spectral resolution and imaging performance. We present a thorough investigation of more than 25 state-of-the-art spectral reconstruction methods which are categorized as prior-based and data-driven methods. Simulations on open-source datasets show that prior-based methods are more suitable for rare data situations, while data-driven methods can unleash the full potential of deep learning in big data cases. We have identified current challenges faced by those methods (e.g., loss function, spectral accuracy, data generalization) and summarized a few trends for future work. With the rapid expansion in datasets and the advent of more advanced neural networks, learnable methods with fine feature representation abilities are very promising. This comprehensive review can serve as a fruitful reference source for peer researchers, thus paving the way for the development of computational hyperspectral imaging.

摘要

高光谱成像是一种多功能应用技术,它能够捕获丰富的空间和光谱信息,这对于识别物质至关重要。然而,获取高光谱图像的设备通常价格昂贵且非常复杂,这阻碍了它们在消费电子产品中的应用,如日常食品检查和即时医疗筛查等。最近,许多计算光谱成像方法已经被提出,这些方法通过直接从广泛可用的 RGB 图像重建高光谱信息。这些重建方法可以避免使用繁琐的光谱相机硬件,同时保持高光谱分辨率和成像性能。我们对 25 种以上的最新光谱重建方法进行了全面的调查,这些方法分为基于先验和数据驱动的方法。在开源数据集上的模拟表明,基于先验的方法更适合于稀有数据情况,而数据驱动的方法可以在大数据情况下充分发挥深度学习的潜力。我们已经确定了这些方法所面临的当前挑战(例如,损失函数、光谱精度、数据泛化),并总结了未来工作的几个趋势。随着数据集的快速扩展和更先进的神经网络的出现,具有精细特征表示能力的可学习方法非常有前途。本综述可以为同行研究人员提供一个有益的参考来源,从而为计算高光谱成像的发展铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c55d/9279412/eca73e27dea8/41598_2022_16223_Fig1_HTML.jpg

相似文献

1
A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging.
Sci Rep. 2022 Jul 13;12(1):11905. doi: 10.1038/s41598-022-16223-1.
2
Spectral Representation vis Data-Guided Sparsity for Hyperspectral Image Super-Resolution.
Sensors (Basel). 2019 Dec 7;19(24):5401. doi: 10.3390/s19245401.
4
5
Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction.
Comput Methods Biomech Biomed Eng Imaging Vis. 2021 Nov 30;10(4):409-417. doi: 10.1080/21681163.2021.1997646. eCollection 2022.
7
Hyperspectral imaging from a raw mosaic image with end-to-end learning.
Opt Express. 2020 Jan 6;28(1):314-324. doi: 10.1364/OE.372746.
9
Compressive single-pixel hyperspectral imaging using RGB sensors.
Opt Express. 2021 Mar 29;29(7):11207-11220. doi: 10.1364/OE.416388.
10

引用本文的文献

1
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning.
Bioengineering (Basel). 2025 Jul 30;12(8):828. doi: 10.3390/bioengineering12080828.
2
Reconstructed hyperspectral imaging for nutrient prediction in pine needles.
Front Plant Sci. 2025 Aug 11;16:1630758. doi: 10.3389/fpls.2025.1630758. eCollection 2025.
4
Trends in Snapshot Spectral Imaging: Systems, Processing, and Quality.
Sensors (Basel). 2025 Jan 23;25(3):675. doi: 10.3390/s25030675.
6
RGB to hyperspectral: Spectral reconstruction for enhanced surgical imaging.
Healthc Technol Lett. 2024 Nov 25;11(6):307-317. doi: 10.1049/htl2.12098. eCollection 2024 Dec.
7
Opto-intelligence spectrometer using diffractive neural networks.
Nanophotonics. 2024 Jul 2;13(20):3883-3893. doi: 10.1515/nanoph-2024-0233. eCollection 2024 Aug.
8
Spectral Reconstruction from RGB Imagery: A Potential Option for Infinite Spectral Data?
Sensors (Basel). 2024 Jun 5;24(11):3666. doi: 10.3390/s24113666.
9
Editorial: Deep learning approaches applied to spectral images for plant phenotyping.
Front Plant Sci. 2024 May 23;15:1425310. doi: 10.3389/fpls.2024.1425310. eCollection 2024.
10
RGB Imaging as a Tool for Remote Sensing of Characteristics of Terrestrial Plants: A Review.
Plants (Basel). 2024 Apr 30;13(9):1262. doi: 10.3390/plants13091262.

本文引用的文献

1
HPRN: Holistic Prior-Embedded Relation Network for Spectral Super-Resolution.
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11409-11423. doi: 10.1109/TNNLS.2023.3260828. Epub 2024 Aug 5.
2
Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging.
Diagnostics (Basel). 2021 Sep 30;11(10):1810. doi: 10.3390/diagnostics11101810.
3
4
Residual Dense Network for Image Restoration.
IEEE Trans Pattern Anal Mach Intell. 2021 Jul;43(7):2480-2495. doi: 10.1109/TPAMI.2020.2968521. Epub 2021 Jun 8.
6
7
Hyperspectral Recovery from RGB Images using Gaussian Processes.
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):100-113. doi: 10.1109/TPAMI.2018.2873729. Epub 2018 Oct 4.
8
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
9
Hyperspectral face recognition with spatiospectral information fusion and PLS regression.
IEEE Trans Image Process. 2015 Mar;24(3):1127-37. doi: 10.1109/TIP.2015.2393057.
10
Medical hyperspectral imaging: a review.
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验