Duan Siwei, Yi Qincheng, Qiu Min, Zhu Zeming, Zhang Ziyi, Gao Yong, Zhang Dong
Gastroenterology Ward Department, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China.
Gastroenterology and Metabolism Research Laboratory Department, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.
J Inflamm Res. 2025 Aug 20;18:11415-11435. doi: 10.2147/JIR.S520874. eCollection 2025.
Ulcerative colitis (UC) remains challenging to diagnose and treat due to a lack of reliable biomarkers. This study investigates oxidative stress-related targets in UC using bioinformatics and experimental validation.
We analyzed four GEO datasets and oxidative-stress genes from MSigDB, applying differential analysis, LASSO regression (for feature selection), and random forest (for robust biomarker identification). An artificial neural network (ANN) diagnostic model was constructed, followed by chromosomal distribution analysis, immune infiltration assessment, and drug screening. Hub gene expression was validated in a 3% DSS-induced colitis mouse model via qPCR and Western blot.
Ultimately there were 6 hub genes identified: DUOX2, ETFDH, GPX8, ITGA5, NPY, and PDK2, which were validated with 3 other datasets. In the DSS-colitis model, DUOX2 and ITGA5 were significantly upregulated (p < 0.05), whereas ETFDH, PDK2, and NPY were downregulated. GPX8 protein expression was elevated in colonic mucosa compared to controls. These findings were further validated in three independent datasets (GSE48958, GSE16879, GSE36807).
Our study identifies six oxidative stress-related biomarkers in UC using machine learning and experimental validation. These findings provide potential diagnostic and therapeutic targets for UC management, paving the way for further clinical investigations.
由于缺乏可靠的生物标志物,溃疡性结肠炎(UC)的诊断和治疗仍然具有挑战性。本研究利用生物信息学和实验验证来研究UC中与氧化应激相关的靶点。
我们分析了四个GEO数据集和来自MSigDB的氧化应激基因,应用差异分析、LASSO回归(用于特征选择)和随机森林(用于可靠的生物标志物识别)。构建了一个人工神经网络(ANN)诊断模型,随后进行染色体分布分析、免疫浸润评估和药物筛选。通过qPCR和蛋白质印迹在3% DSS诱导的结肠炎小鼠模型中验证了枢纽基因的表达。
最终确定了6个枢纽基因:DUOX2、ETFDH、GPX8、ITGA5、NPY和PDK2,并用其他3个数据集进行了验证。在DSS结肠炎模型中,DUOX2和ITGA5显著上调(p < 0.05),而ETFDH、PDK2和NPY下调。与对照组相比,GPX8蛋白在结肠黏膜中的表达升高。这些发现在三个独立的数据集(GSE48958、GSE16879、GSE36807)中得到了进一步验证。
我们的研究通过机器学习和实验验证确定了UC中6个与氧化应激相关的生物标志物。这些发现为UC的管理提供了潜在的诊断和治疗靶点,为进一步的临床研究铺平了道路。