Suppr超能文献

老年患者抑郁症预测的预测特征分析与列线图构建

Predictive features analysis and nomogram construction for predicting depression in elderly patients.

作者信息

Lin Wei, Zhao Zijun, Yu Yingshan, Chen Hongbin

机构信息

Department of Geriatrics, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China.

Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.

出版信息

Front Psychol. 2025 Aug 11;16:1628719. doi: 10.3389/fpsyg.2025.1628719. eCollection 2025.

Abstract

INTRODUCTION

In elderly populations, depression is highly prevalent among those with chronic diseases and cognitive impairment, leading to distress, disability, and poor medical outcomes. With the aging of the population, the prevalence of geriatric depression is rising rapidly. The Comprehensive Geriatric Assessment (CGA), a multidimensional approach, evaluates medical, psychological, and functional capacities to identify highrisk individuals and may be correlated with depression in the elderly.

METHODS

From 2021 to 2023, a total of 219 geriatric patients were recruited. These patients were divided into two groups: a modeling group of 153 patients and a validation group of 66 patients. We collected patients' basic information and CGA results and analyzed them using univariate and multivariate regression. Independent variables influencing depression were identified.

RESULTS

Multivariate regression analyses revealed that several factors had an impact on depression in these patients, including social support level (SSRS), Pain, Anxiety, Basic Activities of Daily Living (BADL) and Gender. By integrating these factors into the nomogram, we found good predictive performance in the training set (AUC 0.867, 95% CI: 0.799-0.936) and in the test set (AUC 0.724, 95%CI:0.5919-0.894). The calibration and discrimination accuracy of the nomograms for predicting depression risk in the elderly were satisfactory, and the decision curve analysis demonstrated significant clinical utility.

DISCUSSION

The model demonstrated robust performance in our study and may constitute a valuable tool for clinical screening.

摘要

引言

在老年人群中,抑郁症在患有慢性疾病和认知障碍的人群中高度流行,会导致痛苦、残疾和不良医疗后果。随着人口老龄化,老年抑郁症的患病率正在迅速上升。综合老年评估(CGA)是一种多维度方法,可评估医疗、心理和功能能力以识别高危个体,并且可能与老年人的抑郁症相关。

方法

2021年至2023年,共招募了219名老年患者。这些患者被分为两组:153名患者的建模组和66名患者的验证组。我们收集了患者的基本信息和CGA结果,并使用单变量和多变量回归进行分析。确定了影响抑郁症的独立变量。

结果

多变量回归分析显示,包括社会支持水平(SSRS)、疼痛、焦虑、日常生活基本活动能力(BADL)和性别在内的几个因素对这些患者的抑郁症有影响。通过将这些因素整合到列线图中,我们发现在训练集(AUC 0.867,95%CI:0.799 - 0.936)和测试集(AUC 0.724,95%CI:0.5919 - 0.894)中具有良好的预测性能。用于预测老年人抑郁症风险的列线图的校准和判别准确性令人满意,决策曲线分析显示出显著的临床实用性。

讨论

该模型在我们的研究中表现出强大的性能,可能构成临床筛查的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验