Suppr超能文献

基于机器学习的老年人肌少症可视化风险预测系统的开发:一项基于中国健康与养老追踪调查(CHARLS)的队列研究

Development of a visualized risk prediction system for sarcopenia in older adults using machine learning: a cohort study based on CHARLS.

作者信息

Du Jinsong, Tao Xinru, Zhu Le, Wang Heming, Qi Wenhao, Min Xiaoqiang, Wei Shujie, Zhang Xiaoyan, Liu Qiang

机构信息

School of Health Management, Zaozhuang University, Zaozhuang, China.

Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China.

出版信息

Front Public Health. 2025 Mar 12;13:1544894. doi: 10.3389/fpubh.2025.1544894. eCollection 2025.

Abstract

INTRODUCTION

The older adult are at high risk of sarcopenia, making early identification and scientific intervention crucial for healthy aging.

METHODS

This study utilized data from the China Health and Retirement Longitudinal Study (CHARLS), including a cohort of 2,717 middle-aged and older adult participants. Ten machine learning algorithms, such as CatBoost, XGBoost, and NGBoost, were used to construct predictive models.

RESULTS

Among these algorithms, the XGBoost model performed the best, with an ROC-AUC of 0.7, and was selected as the final predictive model for sarcopenia risk. SHAP technology was used to visualize the prediction results, enhancing the interpretability of the model, and the system was built on a web platform.

DISCUSSION

The system provides the probability of sarcopenia onset within 4 years based on input variables and identifies critical influencing factors. This facilitates understanding and use by medical professionals. The system supports early identification and scientific intervention for sarcopenia in the older adult, offering significant clinical value and application potential.

摘要

引言

老年人患肌肉减少症的风险很高,因此早期识别和科学干预对健康老龄化至关重要。

方法

本研究利用了中国健康与养老追踪调查(CHARLS)的数据,其中包括2717名中老年参与者的队列。使用了十种机器学习算法,如CatBoost、XGBoost和NGBoost,来构建预测模型。

结果

在这些算法中,XGBoost模型表现最佳,ROC-AUC为0.7,并被选为肌肉减少症风险的最终预测模型。使用SHAP技术可视化预测结果,增强了模型的可解释性,并且该系统是在网络平台上构建的。

讨论

该系统根据输入变量提供4年内发生肌肉减少症的概率,并识别关键影响因素。这便于医学专业人员理解和使用。该系统支持对老年人肌肉减少症的早期识别和科学干预,具有显著的临床价值和应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2041/11936879/80657d75bcc8/fpubh-13-1544894-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验