Zhang Yunhui, Xiao Wenhong, Yin Shihong
School of Internet, Jiaxing Vocational and Technical College, Jiaxing 314036, China.
Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing 314036, China.
Biomimetics (Basel). 2025 Jul 31;10(8):499. doi: 10.3390/biomimetics10080499.
This paper presents a multi-strategy enhanced bald eagle search algorithm (EAB-BES) for 3D UAV path planning in urban environments. EAB-BES addresses key limitations of the traditional bald eagle search (BES) algorithm, including slow convergence, susceptibility to local optima, and poor adaptability in complex urban scenarios. The algorithm enhances solution space exploration through elite opposition-based learning, balances global search and local exploitation via an adaptive weight mechanism, and refines local search directions using block-based elite-guided differential mutation. These innovations significantly improve BES's convergence speed, path accuracy, and adaptability to urban constraints. To validate its effectiveness, six high-density urban environments with varied obstacles were used for comparative experiments against nine advanced algorithms. The results demonstrate that EAB-BES achieves the fastest convergence speed and lowest stable fitness values and generates the shortest, smoothest collision-free 3D paths. Statistical tests and box plot analysis further confirm its superior performance in multiple performance metrics. EAB-BES has greater competitiveness compared with the comparative algorithms and can provide an efficient, reliable and robust solution for UAV autonomous navigation in complex urban environments.
本文提出了一种用于城市环境中三维无人机路径规划的多策略增强型秃鹰搜索算法(EAB-BES)。EAB-BES解决了传统秃鹰搜索(BES)算法的关键局限性,包括收敛速度慢、易陷入局部最优以及在复杂城市场景中适应性差等问题。该算法通过基于精英对抗的学习增强解空间探索,通过自适应权重机制平衡全局搜索和局部开发,并使用基于块的精英引导差分变异优化局部搜索方向。这些创新显著提高了BES的收敛速度、路径精度以及对城市约束的适应性。为验证其有效性,使用六个具有不同障碍物的高密度城市环境与九种先进算法进行对比实验。结果表明,EAB-BES实现了最快的收敛速度和最低的稳定适应度值,并生成了最短、最平滑的无碰撞三维路径。统计测试和箱线图分析进一步证实了其在多个性能指标上的优越性能。与对比算法相比,EAB-BES具有更强的竞争力,能够为复杂城市环境中的无人机自主导航提供高效、可靠且稳健的解决方案。