Suppr超能文献

用于求解时变线性方程和不等式系统的两种新型张神经网络。

Two New Zhang Neural Networks for Solving Time-Varying Linear Equations and Inequalities Systems.

作者信息

Wu Wenqi, Zheng Bing

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4957-4965. doi: 10.1109/TNNLS.2021.3126114. Epub 2023 Aug 4.

Abstract

Recently, Xu et al. solved a class of time-varying linear equations and inequalities systems (LEIESs) by using a Zhang neural network (ZNN) model through introducing a nonnegative relaxation vector. However, the introduction of this unknown nonnegative slack vector will increase the size and complexity of the model, thereby increasing the cost of computation. In this article, we propose two new ZNN models (called traditional Zhang neural network (TZNN) and variant Zhang neural network (VZNN) models, respectively) in which no additional relaxation vector is needed. The convergence analysis of these two new models are performed, and two simulation experiments are given to illustrate their efficiency and effectiveness for solving the time-varying LEIESs, including the applicability of our proposed models to robot manipulator.

摘要

最近,徐等人通过引入非负松弛向量,利用张神经网络(ZNN)模型解决了一类时变线性方程和不等式系统(LEIESs)。然而,这个未知非负松弛向量的引入会增加模型的规模和复杂性,从而增加计算成本。在本文中,我们提出了两种新的ZNN模型(分别称为传统张神经网络(TZNN)和变体张神经网络(VZNN)模型),其中不需要额外的松弛向量。对这两种新模型进行了收敛性分析,并给出了两个仿真实验来说明它们在解决时变LEIESs方面的效率和有效性,包括我们提出的模型在机器人操纵器上的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验