Suppr超能文献

基于上臂多模态生理系统对心肺信号的稳健预测。

Robust Prediction of Cardiorespiratory Signals from a Multimodal Physiological System on the Upper Arm.

作者信息

Branan Kimberly L, Kurian Rachel, McMurray Justin P, Erraguntla Madhav, Gutierrez-Osuna Ricardo, Coté Gerard L

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.

出版信息

Biosensors (Basel). 2025 Aug 1;15(8):493. doi: 10.3390/bios15080493.

Abstract

Many commercial wearable sensor systems typically rely on a single continuous cardiorespiratory sensing modality, photoplethysmography (PPG), which suffers from inherent biases (i.e., differences in skin tone) and noise (e.g., motion and pressure artifacts). In this research, we present a wearable device that provides robust estimates of cardiorespiratory variables by combining three physiological signals from the upper arm: multiwavelength PPG, single-sided electrocardiography (SS-ECG), and bioimpedance plethysmography (BioZ), along with an inertial measurement unit (IMU) providing 3-axis accelerometry and gyroscope information. We evaluated the multimodal device on 16 subjects by its ability to estimate heart rate (HR) and breathing rate (BR) in the presence of various static and dynamic noise sources (e.g., skin tone and motion). We proposed a hierarchical approach that considers the subject's skin tone and signal quality to select the optimal sensing modality for estimating HR and BR. Our results indicate that, when estimating HR, there is a trade-off between accuracy and robustness, with SS-ECG providing the highest accuracy (low mean absolute error; MAE) but low reliability (higher rates of sensor failure), and PPG/BioZ having lower accuracy but higher reliability. When estimating BR, we find that fusing estimates from multiple modalities via ensemble bagged tree regression outperforms single-modality estimates. These results indicate that multimodal approaches to cardiorespiratory monitoring can overcome the accuracy-robustness trade-off that occurs when using single-modality approaches.

摘要

许多商业可穿戴传感器系统通常依赖于单一的连续心肺感应模式——光电容积脉搏波描记法(PPG),该方法存在固有偏差(即肤色差异)和噪声(如运动和压力伪影)。在本研究中,我们展示了一种可穿戴设备,它通过结合来自上臂的三种生理信号:多波长PPG、单侧心电图(SS-ECG)和生物阻抗体积描记法(BioZ),以及提供3轴加速度计和陀螺仪信息的惯性测量单元(IMU),来提供对心肺变量的可靠估计。我们通过评估该多模态设备在存在各种静态和动态噪声源(如肤色和运动)的情况下估计心率(HR)和呼吸率(BR)的能力,对16名受试者进行了测试。我们提出了一种分层方法,该方法考虑受试者的肤色和信号质量,以选择用于估计HR和BR的最佳感应模式。我们的结果表明,在估计HR时,准确性和鲁棒性之间存在权衡,SS-ECG提供最高的准确性(低平均绝对误差;MAE)但可靠性低(传感器故障率较高),而PPG/BioZ的准确性较低但可靠性较高。在估计BR时,我们发现通过集成袋装树回归融合来自多个模态的估计优于单模态估计。这些结果表明,心肺监测的多模态方法可以克服使用单模态方法时出现的准确性-鲁棒性权衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbf2/12384275/d16062674570/biosensors-15-00493-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验