Suppr超能文献

集成式可穿戴式光电容积脉搏波描记术(PPG):一种基于分组稀疏模态分解框架,利用PPG信号进行远程医疗保健中的多生命体征监测。

Integrated wearable PPG: a multi-vital sign monitoring based on group sparse mode decomposition framework in remote health care using PPG signal.

作者信息

Maan Pratibha, Kumar Manjeet, Kumar Ashish, Komaragiri Rama

机构信息

Department of Electronics and Communication Engineering, Panipat Institute of Technology, Panipat, India.

CSIR-National Institute of Science Communication and Policy Research (CSIR-NIScPR), Council of Scientific & Industrial Research (CSIR), New Delhi, India.

出版信息

Phys Eng Sci Med. 2025 Apr 7. doi: 10.1007/s13246-025-01534-0.

Abstract

Monitoring vital signs using a photoplethysmogram (PPG) signal has gained considerable attention, allowing users to monitor anyone, anywhere, and anytime with an objective. In recent years, advances in wearable technology and signal processing techniques have paved the way for accurate and reliable vital sign monitoring using PPG signals. Early detection of cardiovascular diseases can help the physician treat the disease promptly; thus, realtime monitoring of vital signs has emerged. Any deviation in the threshold value of vital signs can indicate potential threats to the cardiovascular system. The need to monitor vital signs in realtime using wearable devices has attracted the interest of the healthcare industry in developing simple and efficient vital sign estimation algorithms. This research introduces a framework to estimate the following important vital signs: heart rate (HR), respiratory rate (RR), blood pressure (BP), and blood oxygen saturation (SpO2), concurrently by overcoming the limitations posed by state-of-the-art techniques that primarily focus on individual or two vital sign estimations. Our proposed approach leverages signal processing techniques to determine the above-mentioned vital signs seamlessly and accurately. This innovation enhances the efficiency of vital sign monitoring and presents a unified solution for comprehensive health assessment. The widespread use of wearable devices for monitoring realtime health status in everyday life manifests in using PPG sensor-enabled wearable devices to perform more complex computational tasks. To date, the algorithms proposed to process an input PPG signal often use multiple processing steps to estimate any vital signs. This can increase the computational complexity of these algorithms, making it challenging to deploy devices with limited computational resources. The proposed work introduces a computationally efficient framework to estimate all four vital signs using the signal framework. The experimental results obtained with the proposed framework demonstrate that the proposed work outperforms the state-of-the-art estimation accuracy and computational complexity.

摘要

使用光电容积脉搏波描记图(PPG)信号监测生命体征已引起广泛关注,它使用户能够客观地在任何地点、任何时间监测任何人。近年来,可穿戴技术和信号处理技术的进步为使用PPG信号进行准确可靠的生命体征监测铺平了道路。心血管疾病的早期检测有助于医生及时治疗疾病;因此,实时生命体征监测应运而生。生命体征阈值的任何偏差都可能表明对心血管系统存在潜在威胁。使用可穿戴设备实时监测生命体征的需求引发了医疗保健行业对开发简单高效的生命体征估计算法的兴趣。本研究引入了一个框架,通过克服主要专注于单个或两个生命体征估计的现有技术所带来的局限性,同时估计以下重要生命体征:心率(HR)、呼吸率(RR)、血压(BP)和血氧饱和度(SpO2)。我们提出的方法利用信号处理技术无缝且准确地确定上述生命体征。这一创新提高了生命体征监测的效率,并为全面健康评估提供了统一的解决方案。可穿戴设备在日常生活中广泛用于监测实时健康状况,这体现在使用配备PPG传感器的可穿戴设备来执行更复杂的计算任务。迄今为止,为处理输入PPG信号而提出的算法通常使用多个处理步骤来估计任何生命体征。这可能会增加这些算法的计算复杂度,使得在计算资源有限的设备上进行部署具有挑战性。所提出的工作引入了一个计算高效的框架,使用信号框架来估计所有四个生命体征。使用所提出的框架获得的实验结果表明,所提出的工作在估计精度和计算复杂度方面优于现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验