Kanyo Nicolett, Borbely Krisztina, Peter Beatrix, Kovacs Kinga Dora, Balogh Anna, Magyaródi Beatrix, Kurunczi Sandor, Szekacs Inna, Horvath Robert
Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary.
Chemical Engineering and Material Science Doctoral School, University of Pannonia, Egyetem u.10, H-8200 Veszprém, Hungary.
Biosensors (Basel). 2025 Aug 14;15(8):534. doi: 10.3390/bios15080534.
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg-Gly-Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway using a live-cell, label-free resonant waveguide grating (RWG) biosensor. RWG technology allowed us to monitor real-time adhesion kinetics of live cells to RGD-displaying substrates, as well as cell adhesion to S1-coated surfaces. To characterize the strength of the integrin-S1 interaction, we determined the dissociation constant using two complementary approaches. First, we performed a live-cell competitive binding assay on RGD-displaying surfaces, where varying concentrations of soluble S1 were added to cell suspensions. Second, we recorded the adhesion kinetics of cells on S1-coated surfaces and fitted the data using a kinetic model based on coupled ordinary differential equations. By comparing the results from both methods, we estimate that approximately 33% of the S1 molecules immobilized on the NbO biosensor surface are capable of initiating integrin-mediated adhesion. These findings support the existence of an alternative integrin-dependent entry route for SARS-CoV-2 and highlight the effectiveness of label-free RWG biosensing for quantitatively probing virus-host interactions under physiologically relevant conditions without the need of the isolation of the interaction partners from the cells.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突(S1)蛋白通过与血管紧张素转换酶2(ACE2)结合促进病毒进入,但它还包含一个精氨酸-甘氨酸-天冬氨酸(RGD)基序,这可能使其与ACE2阴性细胞上的RGD结合整合素相互作用。在这里,我们使用活细胞、无标记共振波导光栅(RWG)生物传感器为这种替代结合途径提供了定量证据。RWG技术使我们能够监测活细胞与展示RGD的底物的实时黏附动力学,以及细胞与包被S1的表面的黏附。为了表征整合素与S1相互作用的强度,我们使用两种互补方法确定了解离常数。首先,我们在展示RGD的表面上进行了活细胞竞争性结合试验,向细胞悬液中加入不同浓度的可溶性S1。其次,我们记录了细胞在包被S1的表面上的黏附动力学,并使用基于耦合常微分方程的动力学模型对数据进行拟合。通过比较两种方法的结果,我们估计固定在NbO生物传感器表面的S1分子中约33%能够启动整合素介导的黏附。这些发现支持了SARS-CoV-2存在一种依赖整合素的替代进入途径,并突出了无标记RWG生物传感在生理相关条件下定量探测病毒-宿主相互作用的有效性,而无需从细胞中分离相互作用伙伴。