Ishchenko Roman, Solopov Maksim, Popandopulo Andrey, Chechekhina Elizaveta, Turchin Viktor, Popivnenko Fedor, Ermak Aleksandr, Ladyk Konstantyn, Konyashin Anton, Golubitskiy Kirill, Burtsev Aleksei, Filimonov Dmitry
V.K. Gusak Institute of Emergency and Reconstructive Surgery, 283045 Donetsk, Russia.
Medical Research and Educational Institute, Lomonosov Moscow State University, 119234 Moscow, Russia.
J Imaging. 2025 Aug 8;11(8):266. doi: 10.3390/jimaging11080266.
This study evaluates the effectiveness of transfer learning with pre-trained convolutional neural networks (CNNs) for the automated binary classification of surgical suture quality (high-quality/low-quality) using photographs of three suture types: interrupted open vascular sutures (IOVS), continuous over-and-over open sutures (COOS), and interrupted laparoscopic sutures (ILS). To address the challenge of limited medical data, eight state-of-the-art CNN architectures-EfficientNetB0, ResNet50V2, MobileNetV3Large, VGG16, VGG19, InceptionV3, Xception, and DenseNet121-were trained and validated on small datasets (100-190 images per type) using 5-fold cross-validation. Performance was assessed using the F1-score, AUC-ROC, and a custom weighted stability-aware score (Score). The results demonstrate that transfer learning achieves robust classification (F1 > 0.90 for IOVS/ILS, 0.79 for COOS) despite data scarcity. ResNet50V2, DenseNet121, and Xception were more stable by Score, with ResNet50V2 achieving the highest AUC-ROC (0.959 ± 0.008) for IOVS internal view classification. GradCAM visualizations confirmed model focus on clinically relevant features (e.g., stitch uniformity, tissue apposition). These findings validate transfer learning as a powerful approach for developing objective, automated surgical skill assessment tools, reducing reliance on subjective expert evaluations while maintaining accuracy in resource-constrained settings.
本研究评估了使用预训练卷积神经网络(CNN)进行迁移学习,以利用三种缝合线类型的照片(间断开放式血管缝合线(IOVS)、连续开放式缝合线(COOS)和间断腹腔镜缝合线(ILS))对手术缝合质量(高质量/低质量)进行自动二元分类的有效性。为应对医学数据有限的挑战,使用五折交叉验证,在小数据集(每种类型100 - 190张图像)上对八种先进的CNN架构(EfficientNetB0、ResNet50V2、MobileNetV3Large、VGG16、VGG19、InceptionV3、Xception和DenseNet121)进行了训练和验证。使用F1分数、AUC - ROC和自定义加权稳定性感知分数(Score)评估性能。结果表明,尽管数据稀缺,但迁移学习仍能实现稳健的分类(IOVS/ILS的F1>0.90,COOS的F1为0.79)。根据Score,ResNet50V2、DenseNet121和Xception更稳定,ResNet50V2在IOVS内部视图分类中实现了最高的AUC - ROC(0.959±0.008)。GradCAM可视化证实模型关注临床相关特征(如缝线均匀性、组织贴合)。这些发现验证了迁移学习是开发客观、自动化手术技能评估工具的有力方法,在资源受限的环境中减少了对主观专家评估的依赖,同时保持了准确性。