Suppr超能文献

基于深度学习的缝合训练系统。

Deep learning based suture training system.

作者信息

Mansour Mohammed, Cumak Eda Nur, Kutlu Mustafa, Mahmud Shekhar

机构信息

Department of Mechatronics Engineering, Sakarya University of Applied Sciences, Sakarya, Turkey.

Department of Systems Engineering, Military Technological College, Muscat, Oman.

出版信息

Surg Open Sci. 2023 Aug 6;15:1-11. doi: 10.1016/j.sopen.2023.07.023. eCollection 2023 Sep.

Abstract

BACKGROUND AND OBJECTIVES

Surgical suturing is a fundamental skill that all medical and dental students learn during their education. Currently, the grading of students' suture skills in the medical faculty during general surgery training is relative, and students do not have the opportunity to learn specific techniques. Recent technological advances, however, have made it possible to classify and measure suture skills using artificial intelligence methods, such as Deep Learning (DL). This work aims to evaluate the success of surgical suture using DL techniques.

METHODS

Six Convolutional Neural Network (CNN) models: VGG16, VGG19, Xception, Inception, MobileNet, and DensNet. We used a dataset of suture images containing two classes: successful and unsuccessful, and applied statistical metrics to compare the precision, recall, and F1 scores of the models.

RESULTS

The results showed that Xception had the highest accuracy at 95 %, followed by MobileNet at 91 %, DensNet at 90 %, Inception at 84 %, VGG16 at 73 %, and VGG19 at 61 %. We also developed a graphical user interface that allows users to evaluate suture images by uploading them or using the camera. The images are then interpreted by the DL models, and the results are displayed on the screen.

CONCLUSIONS

The initial findings suggest that the use of DL techniques can minimize errors due to inexperience and allow physicians to use their time more efficiently by digitizing the process.

摘要

背景与目的

手术缝合是所有医学和牙科学生在学习期间都要掌握的一项基本技能。目前,医学院学生在普通外科培训期间的缝合技能评分是相对的,而且学生没有机会学习特定技术。然而,最近的技术进步使得利用深度学习(DL)等人工智能方法对缝合技能进行分类和测量成为可能。这项工作旨在评估使用DL技术进行手术缝合的成效。

方法

六个卷积神经网络(CNN)模型:VGG16、VGG19、Xception、Inception、MobileNet和DensNet。我们使用了一个包含成功和不成功两类的缝合图像数据集,并应用统计指标来比较各模型的精确率、召回率和F1分数。

结果

结果显示,Xception的准确率最高,为95%,其次是MobileNet,为91%,DensNet为90%,Inception为84%,VGG16为73%,VGG19为61%。我们还开发了一个图形用户界面,允许用户通过上传或使用摄像头来评估缝合图像。然后由DL模型对图像进行解读,并将结果显示在屏幕上。

结论

初步研究结果表明,使用DL技术可以将因经验不足导致的误差降至最低,并通过数字化流程让医生更高效地利用时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e2/10432819/f092997e640a/gr1.jpg

相似文献

1
Deep learning based suture training system.
Surg Open Sci. 2023 Aug 6;15:1-11. doi: 10.1016/j.sopen.2023.07.023. eCollection 2023 Sep.
2
Non-invasive detection of anemia using lip mucosa images transfer learning convolutional neural networks.
Front Big Data. 2023 Nov 3;6:1291329. doi: 10.3389/fdata.2023.1291329. eCollection 2023.
3
Hybrid COVID-19 segmentation and recognition framework (HMB-HCF) using deep learning and genetic algorithms.
Artif Intell Med. 2021 Sep;119:102156. doi: 10.1016/j.artmed.2021.102156. Epub 2021 Aug 28.
4
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.
Pol J Radiol. 2022 Feb 28;87:e118-e124. doi: 10.5114/pjr.2022.113435. eCollection 2022.
5
Glaucoma detection in Latino population through OCT's RNFL thickness map using transfer learning.
Int Ophthalmol. 2021 Nov;41(11):3727-3741. doi: 10.1007/s10792-021-01931-w. Epub 2021 Jul 1.
6
Deep Neural Networks for Dental Implant System Classification.
Biomolecules. 2020 Jul 1;10(7):984. doi: 10.3390/biom10070984.
7
Deep Learning Approach for Analyzing the COVID-19 Chest X-Rays.
J Med Phys. 2021 Jul-Sep;46(3):189-196. doi: 10.4103/jmp.JMP_22_21. Epub 2021 Sep 8.
8
Comparison of Convolutional Neural Network Models for Determination of Vocal Fold Normality in Laryngoscopic Images.
J Voice. 2022 Sep;36(5):590-598. doi: 10.1016/j.jvoice.2020.08.003. Epub 2020 Aug 30.
9
Classification of fungal genera from microscopic images using artificial intelligence.
J Pathol Inform. 2023 Apr 23;14:100314. doi: 10.1016/j.jpi.2023.100314. eCollection 2023.
10
Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning.
Asian Pac J Cancer Prev. 2023 Feb 1;24(2):531-544. doi: 10.31557/APJCP.2023.24.2.531.

引用本文的文献

2
Deep learning for gender estimation using hand radiographs: a comparative evaluation of CNN models.
BMC Med Imaging. 2025 Jul 1;25(1):260. doi: 10.1186/s12880-025-01809-8.
3
Progress in tension-relieving suturing surgery: revolutionary surgical techniques and patient prognosis evaluation methods.
Front Surg. 2025 May 13;12:1587582. doi: 10.3389/fsurg.2025.1587582. eCollection 2025.
4
Artificial intelligence: revolutionizing robotic surgery: review.
Ann Med Surg (Lond). 2024 Aug 1;86(9):5401-5409. doi: 10.1097/MS9.0000000000002426. eCollection 2024 Sep.

本文引用的文献

1
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
2
Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images.
J Ambient Intell Humaniz Comput. 2023;14(1):469-478. doi: 10.1007/s12652-021-03306-6. Epub 2021 May 15.
4
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.
5
Quantification of motion characteristics and forces applied to tissues during suturing.
Am J Surg. 2005 Jul;190(1):131-6. doi: 10.1016/j.amjsurg.2005.04.006.
6
Synchronized video and motion analysis for the assessment of procedures in the operating theater.
Arch Surg. 2005 Mar;140(3):293-9. doi: 10.1001/archsurg.140.3.293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验