Suppr超能文献

基于组织病理学图像使用ResNet架构对乳腺癌亚型进行多类别分类

Multi-Class Classification of Breast Cancer Subtypes Using ResNet Architectures on Histopathological Images.

作者信息

Desai Akshat, Mahto Rakeshkumar

机构信息

Department of Computer Science, California State University, Fullerton, CA 92831, USA.

Department of Electrical and Computer Engineering, California State University, Fullerton, CA 92831, USA.

出版信息

J Imaging. 2025 Aug 21;11(8):284. doi: 10.3390/jimaging11080284.

Abstract

Breast cancer is a significant cause of cancer-related mortality among women around the globe, underscoring the need for early and accurate diagnosis. Typically, histopathological analysis of biopsy slides is utilized for tumor classification. However, it is labor-intensive, subjective, and often affected by inter-observer variability. Therefore, this study explores a deep learning-based, multi-class classification framework for distinguishing breast cancer subtypes using convolutional neural networks (CNNs). Unlike previous work using the popular BreaKHis dataset, where binary classification models were applied, in this work, we differentiate eight histopathological subtypes: four benign (adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma) and four malignant (ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma). This work leverages transfer learning with ImageNet-pretrained ResNet architectures (ResNet-18, ResNet-34, and ResNet-50) and extensive data augmentation to enhance classification accuracy and robustness across magnifications. Among the ResNet models, ResNet-50 achieved the best performance, attaining a maximum accuracy of 92.42%, an AUC-ROC of 99.86%, and an average specificity of 98.61%. These findings validate the combined effectiveness of CNNs and transfer learning in capturing fine-grained histopathological features required for accurate breast cancer subtype classification.

摘要

乳腺癌是全球女性癌症相关死亡的一个重要原因,这凸显了早期准确诊断的必要性。通常,活检切片的组织病理学分析用于肿瘤分类。然而,它劳动强度大、主观,且常受观察者间差异的影响。因此,本研究探索了一种基于深度学习的多类分类框架,使用卷积神经网络(CNN)来区分乳腺癌亚型。与以往使用流行的BreaKHis数据集应用二元分类模型的工作不同,在本研究中,我们区分了八种组织病理学亚型:四种良性(腺病、纤维腺瘤、叶状肿瘤和管状腺瘤)和四种恶性(导管癌、小叶癌、黏液癌和乳头状癌)。这项工作利用了基于ImageNet预训练的ResNet架构(ResNet-18、ResNet-34和ResNet-50)的迁移学习以及大量的数据增强,以提高不同放大倍数下的分类准确性和鲁棒性。在ResNet模型中,ResNet-50取得了最佳性能,最高准确率达到92.42%,AUC-ROC为99.86%,平均特异性为98.61%。这些发现验证了CNN和迁移学习在捕捉准确乳腺癌亚型分类所需的细粒度组织病理学特征方面的综合有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验