Kebieche Narimane, Yim Seungae, Lambert Claude, Soulimani Rachid
LCOMS/Neurotoxicology and Bioactivity, University of Lorraine, 57070 Metz, France.
Luxembourg Centre for Systems Biomedicine, L-4367 Belvaux, Luxembourg.
Toxics. 2025 Jul 26;13(8):629. doi: 10.3390/toxics13080629.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations.
全氟和多氟烷基物质(PFAS)是持久性环境污染物,由于它们在生物体内的蓄积能力,持续引发人们的关注。近年来,越来越多的研究表明,PFAS可通过破坏DNA完整性和表观遗传调控来发挥其毒性作用。这包括DNA甲基化模式的改变、组蛋白修饰、染色质重塑以及对DNA修复机制的干扰。这些分子水平的改变会损害转录调控和细胞内稳态,导致基因组不稳定和长期的生物学功能障碍。在神经系统中,PFAS暴露似乎尤其令人担忧。它会影响神经发育的关键调节因子,如脑源性神经营养因子(BDNF)、突触可塑性基因和炎症介质。重要的是,表观遗传失调还延伸至非编码RNA(ncRNA),包括介导转录后沉默和染色质重塑的微小RNA(miRNA)和长链非编码RNA(lncRNA)。尽管跨代神经毒性的直接证据仍在不断涌现,但动物研究提供了有力的线索。生殖系表观遗传谱的持续变化和转录组改变表明,发育重编程可能会遗传给后代。此外,PFAS调节核受体信号传导(如过氧化物酶体增殖物激活受体γ,PPARγ),进一步将环境信号与染色质水平的基因调控联系起来。总之,这些发现强调了一个机制框架,即PFAS通过保守的表观遗传和基因毒性机制破坏神经发育和认知功能。了解这些上游改变如何影响长期的神经发育和神经行为结果,对于改进风险评估和指导未来干预至关重要。本综述强调了对PFAS诱导的染色质破坏进行综合研究的必要性,特别是在不同发育阶段,以及它们对后代产生影响的可能性。