Suppr超能文献

使用机器学习对颈椎前路椎间盘切除融合术后非常规出院进行基于年龄的预测。

Age-based prediction of non-routine discharge after anterior cervical discectomy and fusion using machine learning.

作者信息

Mastrokostas Paul G, Mastrokostas Leonidas E, Lavi Aaron B, Razi Abigail, Emara Ahmed K, Dalton Jonathan, Kepler Christopher K, Monsef Jad Bou, Razi Afshin E, Ng Mitchell K

机构信息

SUNY Downstate Health Sciences University, Brooklyn, USA.

Maimonides Medical Center, New York, USA.

出版信息

Eur Spine J. 2025 Aug 27. doi: 10.1007/s00586-025-09303-z.

Abstract

PURPOSE

To examine factors influencing non-routine discharge in ACDF patients stratified by age utilizing machine learning.

METHODS

A cohort of 219,380 weighted ACDF cases from the National Inpatient Sample (NIS) database spanning 2016-2020 was divided into three age groups: 50-64, 65-79, and 80 + years. Eight supervised machine learning models predicted non-routine discharge based on patient characteristics, including age, length of stay (LOS), and comorbidities. Chi-square and t-tests compared outcomes. After Bonferroni correction, significance was set at P < 0.004.

RESULTS

Across all age groups, several patient-specific factors were associated with non-routine discharge. In the 50-64 group, deficiency anemias (1.1% vs. 0.6%, P < 0.001), paralysis (1.2% vs. 0.1%, P < 0.001), and race (Black: 15.4% vs. 10.0%, P < 0.001) were significant predictors. For 65-79, heart failure (1.2% vs. 0.5%, P < 0.001) and dementia (0.5% vs. 0.1%, P < 0.001) increased risk. In the 80 + group, racial disparities persisted. Machine learning models-especially AdaBoost and Gradient Boosting-demonstrated strong predictive performance, with AUCs exceeding 80% for the 65-79 and 80 + cohorts. Prolonged LOS was also significantly associated with non-routine discharge across all age groups, with patients staying over twice as long on average (all P < 0.001).

CONCLUSION

Non-routine discharge after ACDF is influenced by patient-specific factors. Strategies targeting older patients with complex comorbidities could help reduce adverse outcomes.

摘要

目的

利用机器学习研究按年龄分层的ACDF患者非常规出院的影响因素。

方法

将2016 - 2020年国家住院患者样本(NIS)数据库中的219380例加权ACDF病例分为三个年龄组:50 - 64岁、65 - 79岁和80岁及以上。八个监督机器学习模型根据患者特征(包括年龄、住院时间(LOS)和合并症)预测非常规出院。卡方检验和t检验比较结果。经过Bonferroni校正后,显著性设定为P < 0.004。

结果

在所有年龄组中,几个患者特定因素与非常规出院相关。在50 - 64岁组中,缺铁性贫血(1.1%对0.6%,P < 0.001)、瘫痪(1.2%对0.1%,P < 0.001)和种族(黑人:15.4%对10.0%,P < 0.001)是显著的预测因素。对于65 - 79岁组,心力衰竭(1.2%对0.5%,P < 0.001)和痴呆(0.5%对0.1%,P < 0.001)增加了风险。在80岁及以上组中,种族差异仍然存在。机器学习模型——尤其是AdaBoost和梯度提升——表现出很强的预测性能,65 - 79岁和80岁及以上队列的曲线下面积(AUC)超过80%。在所有年龄组中,住院时间延长也与非常规出院显著相关,患者平均住院时间延长两倍多(所有P < 0.001)。

结论

ACDF后的非常规出院受患者特定因素影响。针对患有复杂合并症的老年患者的策略可能有助于减少不良结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验