Sirintrapun Sahussapont Joseph
Mass General Brigham, Boston, MA.
JCO Clin Cancer Inform. 2025 Aug;9:e2500017. doi: 10.1200/CCI-25-00017. Epub 2025 Aug 27.
This Special Article provides a comprehensive review and expert commentary on the prospective clinical implementation of artificial intelligence (AI) in the detection of prostate cancer from digital prostate biopsies, as presented in the original research by Flach et al. It contextualizes the study within broader developments in digital pathology and AI, addressing barriers to adoption and the implications for diagnostic workflows and pathology practice.
Drawing on insights from the CONFIDENT-P trial and the author's own experience with digital pathology and AI-assisted workflows, this article critically examines the clinical, regulatory, economic, and operational dimensions of implementing AI in diagnostic pathology. The focus centers on real-world deployment, particularly the integration of Paige Prostate Detect AI (PPD-AI) and its influence on immunohistochemistry (IHC) utilization.
The commentary highlights the trial's prospective design as a significant advancement in AI validation. Key findings include a reduction in IHC use, high diagnostic performance of PPD-AI, and improved diagnostic confidence among AI-assisted pathologists. However, variability in IHC practices across institutions, limitations in AI generalizability, and the need for system integration remain major challenges. The article also addresses practical issues such as automation bias, model drift, and lack of interoperability between viewers and laboratory information systems.
The adoption of AI in digital pathology is accelerating but requires thoughtful integration into clinical workflows. Although prostate biopsies represent an ideal entry point, broader success will depend on regulatory alignment, workforce training, infrastructure readiness, and data governance. This commentary underscores the importance of clinician-AI synergy and provides practical guidance for laboratories navigating the transition from pilot implementations to scalable clinical use.
这篇专题文章对人工智能(AI)在数字前列腺活检中检测前列腺癌的前瞻性临床应用进行了全面综述并给出专家评论,如弗拉赫等人的原始研究所呈现的那样。它将该研究置于数字病理学和AI更广泛的发展背景中,探讨了采用过程中的障碍以及对诊断工作流程和病理学实践的影响。
借鉴CONFIDENT-P试验的见解以及作者自身在数字病理学和AI辅助工作流程方面的经验,本文批判性地审视了在诊断病理学中实施AI的临床、监管、经济和操作层面。重点集中在实际应用,特别是Paige前列腺检测AI(PPD-AI)的整合及其对免疫组织化学(IHC)使用的影响。
评论强调该试验的前瞻性设计是AI验证方面的一项重大进展。主要发现包括IHC使用减少、PPD-AI的高诊断性能以及AI辅助病理学家诊断信心的提高。然而,各机构间IHC实践的差异、AI通用性的局限性以及系统整合的需求仍然是主要挑战。文章还讨论了诸如自动化偏差、模型漂移以及观察者与实验室信息系统之间缺乏互操作性等实际问题。
数字病理学中AI的采用正在加速,但需要谨慎地整合到临床工作流程中。虽然前列腺活检是一个理想的切入点,但更广泛的成功将取决于监管协调、人员培训、基础设施准备情况和数据治理。这篇评论强调了临床医生与AI协同合作的重要性,并为实验室从试点实施向可扩展的临床应用过渡提供了实用指导。