Zhang Xianjun, Hou Pengfei
School of Materials Science and Engineering, Xiangtan University, Hunan Xiangtan 411105, China.
ACS Appl Mater Interfaces. 2025 Sep 10;17(36):51488-51498. doi: 10.1021/acsami.5c13157. Epub 2025 Aug 27.
Two-dimensional (2D) vertical heterojunctions, characterized by atomic-scale van der Waals interfaces that facilitate efficient vertical charge transport, offer a promising architecture for integrating self-powered photodetectors (sense) with neuromorphic synapses (think) to achieve an integrated sense-think functionality. However, the interface-induced opposing electric fields and limited spectral response restrict their development. In this study, we address these limitations through a graphene (Gr)/WSe/Ag vertical heterojunction architecture. This design synergistically combines minimized carrier transport distance to reduce recombination losses, codirectional built-in electric fields derived from surface potential differences to enhance carrier separation, and plasmonic hot-electron effect to extend spectral response. The optimized heterojunction delivers a remarkable performance. Under 405 nm light of identical optical power intensity, its vertical structure and codirectional built-in electric fields yield a 10.69-fold increase in photocurrent density (). The generation of plasmonic hot electrons produces a 35-fold increase in under 1064 nm light of the same power intensity while enabling the successful detection of 1550 nm light. More significantly, the heterojunction exhibits ultralow-power synaptic behavior, with energy consumption ranging from just 0.42 to 320 pJ across visible to near-infrared wavelengths (405-1550 nm). Owing to the excellent self-powered broadband photodetection performance and low-power visual synapses of 2D vertical heterojunctions with co-oriented built-in electric fields and plasmonic hot-electron effect, they hold great potential in ″sense-think″ intelligent devices.
二维(2D)垂直异质结以促进高效垂直电荷传输的原子级范德华界面为特征,为将自供电光电探测器(感知)与神经形态突触(思考)集成以实现集成的感知-思考功能提供了一种很有前景的架构。然而,界面诱导的反向电场和有限的光谱响应限制了它们的发展。在本研究中,我们通过石墨烯(Gr)/WSe/Ag垂直异质结架构解决了这些限制。这种设计协同结合了最小化的载流子传输距离以减少复合损失、源自表面电势差的同向内置电场以增强载流子分离,以及等离子体热电子效应以扩展光谱响应。优化后的异质结展现出卓越的性能。在相同光功率强度的405 nm光下,其垂直结构和同向内置电场使光电流密度()增加了10.69倍。等离子体热电子的产生在相同功率强度的1064 nm光下使增加了35倍,同时实现了对1550 nm光的成功检测。更重要的是,该异质结表现出超低功耗的突触行为,在可见光到近红外波长(405 - 1550 nm)范围内,能耗仅为0.42至320 pJ。由于具有同向内置电场和等离子体热电子效应的二维垂直异质结具有出色的自供电宽带光电探测性能和低功耗视觉突触,它们在“感知-思考”智能设备中具有巨大潜力。