Suppr超能文献

人工智能辅助的水肿图优化可改善双螺旋双能量CT中的梗死检测。

AI-Assisted Edema Map Optimization Improves Infarction Detection in Twin-Spiral Dual-Energy CT.

作者信息

Singer Ludwig, Heinze Daniel, Möhle Tim Alexius, Sekita Alexander, Mennecke Angelika, Lang Stefan, Gerner Stefan T, Schwab Stefan, Dörfler Arnd, Schmidt Manuel Alexander

机构信息

Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany.

Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany.

出版信息

Brain Sci. 2025 Jul 31;15(8):821. doi: 10.3390/brainsci15080821.

Abstract

OBJECTIVE

This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO).

METHODS

We retrospectively analyzed 52 patients who underwent Twin-Spiral DECT after endovascular stroke therapy. Ten patients were used to generate a device-specific parameter ("y") using an AI-based neural network (SynthSR). This parameter was integrated into the post-processing algorithm for edema map generation. Quantitative Hounsfield unit (HU) measurements were used to assess density differences in ischemic brain tissue across conventional virtual non-contrast (VNC) images and edema maps.

RESULTS

The median HU of infarcted tissue in conventional mixed DECT was 33.73 ± 4.58, compared to 22.96 ± 3.81 in default VNC images. Edema maps with different smoothing filter settings showed values of 14.39 ± 4.96, 14.50 ± 3.75, and 15.05 ± 2.65, respectively. All edema maps demonstrated statistically significant HU differences of infarcted tissue compared to conventional VNC images (p<0.001) while maintaining the density values of non-infarcted brain tissue.

CONCLUSIONS

Enhancing the post-processing algorithm of conventional virtual non-contrast imaging improves infarct detection compared to standard mixed or virtual non-contrast reconstructions in Dual-Energy CT.

摘要

目的

本研究旨在评估与传统双能量CT(DECT)和单能量CT(SECT)相比,在大血管闭塞(LVO)的血管内治疗(EVT)后,修改双螺旋双能量计算机断层扫描(DECT)的后处理算法是否能改善梗死灶的检测。

方法

我们回顾性分析了52例血管内卒中治疗后接受双螺旋DECT检查的患者。使用基于人工智能的神经网络(SynthSR)对10例患者生成特定设备参数(“y”)。该参数被整合到用于生成水肿图的后处理算法中。采用定量Hounsfield单位(HU)测量来评估常规虚拟平扫(VNC)图像和水肿图上缺血脑组织的密度差异。

结果

传统混合DECT中梗死组织的HU中位数为33.73±4.58,而默认VNC图像中为22.96±3.81。不同平滑滤波器设置的水肿图显示的值分别为14.39±4.96、14.50±3.75和15.05±2.65。与传统VNC图像相比,所有水肿图均显示梗死组织的HU差异具有统计学意义(p<0.001),同时保持了非梗死脑组织的密度值。

结论

与双能量CT中的标准混合或虚拟平扫重建相比,增强传统虚拟平扫成像的后处理算法可改善梗死灶的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/750d/12384788/b22795fd6cba/brainsci-15-00821-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验