Singer Ludwig, Heinze Daniel, Möhle Tim Alexius, Sekita Alexander, Mennecke Angelika, Lang Stefan, Gerner Stefan T, Schwab Stefan, Dörfler Arnd, Schmidt Manuel Alexander
Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany.
Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany.
Brain Sci. 2025 Jul 31;15(8):821. doi: 10.3390/brainsci15080821.
This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO).
We retrospectively analyzed 52 patients who underwent Twin-Spiral DECT after endovascular stroke therapy. Ten patients were used to generate a device-specific parameter ("y") using an AI-based neural network (SynthSR). This parameter was integrated into the post-processing algorithm for edema map generation. Quantitative Hounsfield unit (HU) measurements were used to assess density differences in ischemic brain tissue across conventional virtual non-contrast (VNC) images and edema maps.
The median HU of infarcted tissue in conventional mixed DECT was 33.73 ± 4.58, compared to 22.96 ± 3.81 in default VNC images. Edema maps with different smoothing filter settings showed values of 14.39 ± 4.96, 14.50 ± 3.75, and 15.05 ± 2.65, respectively. All edema maps demonstrated statistically significant HU differences of infarcted tissue compared to conventional VNC images (p<0.001) while maintaining the density values of non-infarcted brain tissue.
Enhancing the post-processing algorithm of conventional virtual non-contrast imaging improves infarct detection compared to standard mixed or virtual non-contrast reconstructions in Dual-Energy CT.
本研究旨在评估与传统双能量CT(DECT)和单能量CT(SECT)相比,在大血管闭塞(LVO)的血管内治疗(EVT)后,修改双螺旋双能量计算机断层扫描(DECT)的后处理算法是否能改善梗死灶的检测。
我们回顾性分析了52例血管内卒中治疗后接受双螺旋DECT检查的患者。使用基于人工智能的神经网络(SynthSR)对10例患者生成特定设备参数(“y”)。该参数被整合到用于生成水肿图的后处理算法中。采用定量Hounsfield单位(HU)测量来评估常规虚拟平扫(VNC)图像和水肿图上缺血脑组织的密度差异。
传统混合DECT中梗死组织的HU中位数为33.73±4.58,而默认VNC图像中为22.96±3.81。不同平滑滤波器设置的水肿图显示的值分别为14.39±4.96、14.50±3.75和15.05±2.65。与传统VNC图像相比,所有水肿图均显示梗死组织的HU差异具有统计学意义(p<0.001),同时保持了非梗死脑组织的密度值。
与双能量CT中的标准混合或虚拟平扫重建相比,增强传统虚拟平扫成像的后处理算法可改善梗死灶的检测。