文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

空间转录组学解码乳腺癌微环境异质性:从多维动态分析到精准治疗蓝图构建

Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction.

作者信息

Ma Aolong, Xiang Lingyan, Yuan Jingping, Wang Qianwen, Zhao Lina, Yan Honglin

机构信息

Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China.

出版信息

Biomolecules. 2025 Jul 24;15(8):1067. doi: 10.3390/biom15081067.


DOI:10.3390/biom15081067
PMID:40867511
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12383931/
Abstract

Breast cancer, the most prevalent malignancy among women worldwide, exhibits significant heterogeneity, particularly in the tumor microenvironment (TME), which poses challenges for treatment. Spatial transcriptomics (ST) has emerged as a transformative technology, enabling gene expression analysis while preserving tissue spatial architecture. This provides unprecedented insights into tumor heterogeneity, cellular interactions, and disease mechanisms, offering a powerful tool for advancing breast cancer research and therapy. This review aims to synthesize the applications of ST in breast cancer research, focusing on its role in decoding tumor heterogeneity, characterizing the TME, elucidating progression and metastasis dynamics, and predicting therapeutic responses. We also explore how ST can bridge molecular profiling with clinical translation to enhance precision therapy. The key scientific concepts of review included the following: We summarize the technological advancements in ST, including imaging-based and sequencing-based methods, and their applications in breast cancer. Key findings highlight how ST resolves spatial heterogeneity across molecular subtypes and histological variants. ST reveals the dynamic interplay between tumor cells, immune cells, and stromal components, uncovering mechanisms of immune evasion, metabolic reprogramming, and therapeutic resistance. Additionally, ST identifies spatial prognostic markers and predicts responses to chemotherapy, targeted therapy, and immunotherapy. We propose that ST serves as a hub for integrating multi-omics data, offering a roadmap for precision oncology and personalized treatment strategies in breast cancer.

摘要

乳腺癌是全球女性中最常见的恶性肿瘤,具有显著的异质性,尤其是在肿瘤微环境(TME)中,这给治疗带来了挑战。空间转录组学(ST)已成为一项变革性技术,能够在保留组织空间结构的同时进行基因表达分析。这为肿瘤异质性、细胞间相互作用和疾病机制提供了前所未有的见解,为推进乳腺癌研究和治疗提供了强大工具。本综述旨在综合ST在乳腺癌研究中的应用,重点关注其在解码肿瘤异质性、表征TME、阐明进展和转移动态以及预测治疗反应方面的作用。我们还探讨了ST如何将分子谱分析与临床转化联系起来,以增强精准治疗。综述的关键科学概念包括以下内容:我们总结了ST的技术进展,包括基于成像和基于测序的方法,以及它们在乳腺癌中的应用。主要发现突出了ST如何解决不同分子亚型和组织学变体之间的空间异质性。ST揭示了肿瘤细胞、免疫细胞和基质成分之间的动态相互作用,揭示了免疫逃逸、代谢重编程和治疗耐药的机制。此外,ST还能识别空间预后标志物,并预测对化疗、靶向治疗和免疫治疗的反应。我们认为,ST作为整合多组学数据的枢纽,为乳腺癌的精准肿瘤学和个性化治疗策略提供了路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff22/12383931/b5eae7dc77f1/biomolecules-15-01067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff22/12383931/218baa164769/biomolecules-15-01067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff22/12383931/b5eae7dc77f1/biomolecules-15-01067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff22/12383931/218baa164769/biomolecules-15-01067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff22/12383931/b5eae7dc77f1/biomolecules-15-01067-g002.jpg

相似文献

[1]
Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction.

Biomolecules. 2025-7-24

[2]
Integrative single-cell and spatial transcriptomics uncover ELK4-mediated mechanisms in + tumor cells driving gastric cancer progression, metabolic reprogramming, and immune evasion.

Front Immunol. 2025-7-4

[3]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[4]
Deciphering the tumor immune microenvironment: single-cell and spatial transcriptomic insights into cervical cancer fibroblasts.

J Exp Clin Cancer Res. 2025-7-5

[5]
Systematic screening of metabolic pathways to identify two breast cancer subtypes with divergent immune characteristics.

Sci Rep. 2025-7-1

[6]
"Small extracellular vesicles: messengers at the service of breast cancer agenda in the primary and distant microenvironments".

J Exp Clin Cancer Res. 2025-7-21

[7]
Integrated proteomics and transcriptomics analysis reveals key regulatory genes between ER-positive/PR-positive and ER-positive/PR-negative breast cancer.

BMC Cancer. 2025-7-1

[8]
Integrating scRNA-seq and spatial transcriptomics to explore the implication of G6PD on immune microenvironment in lymphatic metastasis of breast cancer.

Med Oncol. 2025-7-21

[9]
Integrated transcriptomics and machine learning reveal REN as a dual regulator of tumor stemness and NK cell evasion in Wilms tumor progression.

Front Immunol. 2025-6-4

[10]
Integrating spatial and single-cell transcriptomics reveals tumor heterogeneity and intercellular networks in colorectal cancer.

Cell Death Dis. 2024-5-10

本文引用的文献

[1]
Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy.

Front Immunol. 2024-12-19

[2]
Spatial transcriptomics: a new frontier in accurate localization of breast cancer diagnosis and treatment.

Front Immunol. 2024

[3]
Single-cell and Spatial Transcriptomic Analyses Implicate Formation of the Immunosuppressive Microenvironment during Breast Tumor Progression.

J Immunol. 2024-11-1

[4]
Bin2cell reconstructs cells from high resolution Visium HD data.

Bioinformatics. 2024-9-2

[5]
Eganelisib combined with immune checkpoint inhibitor therapy and chemotherapy in frontline metastatic triple-negative breast cancer triggers macrophage reprogramming, immune activation and extracellular matrix reorganization in the tumor microenvironment.

J Immunother Cancer. 2024-8-30

[6]
Integration of Bioinformatics and Machine Learning to Identify CD8+ T Cell-Related Prognostic Signature to Predict Clinical Outcomes and Treatment Response in Breast Cancer Patients.

Genes (Basel). 2024-8-19

[7]
Intra-patient spatial comparison of non-metastatic and metastatic lymph nodes reveals the reduction of CD169 macrophages by metastatic breast cancers.

EBioMedicine. 2024-9

[8]
Single-nucleus chromatin accessibility and transcriptomic map of breast tissues of women of diverse genetic ancestry.

Nat Med. 2024-12

[9]
Spatial Transcriptomic Profiling Reveals Gene Expression Characteristics in Lymph Node-positive Breast Carcinoma.

Anticancer Res. 2024-8

[10]
Spatial molecular profiling of mixed invasive ductal and lobular breast cancers reveals heterogeneity in intrinsic molecular subtypes, oncogenic signatures, and mutations.

Proc Natl Acad Sci U S A. 2024-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索