Suppr超能文献

中国H5禽流感的时空风险评估:一种用于揭示多尺度驱动因素的可解释机器学习方法

Spatiotemporal Risk Assessment of H5 Avian Influenza in China: An Interpretable Machine Learning Approach to Uncover Multi-Scale Drivers.

作者信息

Wang Xinyi, Xu Yihui, Xi Xi

机构信息

College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.

China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.

出版信息

Animals (Basel). 2025 Aug 20;15(16):2447. doi: 10.3390/ani15162447.

Abstract

Avian influenza (AI), particularly the H5 subtypes, poses a significant and persistent threat globally. While the influence of environmental factors on AI seasonality is recognized, a comprehensive understanding of the hierarchical and interactive effects of multi-scale drivers in a vast and ecologically diverse country like China remains limited. We developed an interpretable machine learning framework (XGBoost with SHAP) to analyze the spatiotemporal risk of 1800 H5 AI outbreaks in mainland China from 2000 to 2023. We integrated multi-source data, including dynamic poultry density, Köppen climate classifications, Important Bird and Biodiversity Areas (IBAs), and daily meteorological variables, to identify key drivers and quantify their nonlinear and synergistic effects. The model demonstrated high predictive accuracy (5-fold cross-validation R2 = 0.776). Our analysis revealed that macro-scale ecological contexts, particularly poultry density and specific Köppen climate zones (e.g., Cwa), and strong seasonality were the most dominant drivers of AI risk. We identified significant nonlinear relationships, such as a strong inverse relationship with temperature, and a critical synergistic interaction where high temperatures substantially amplified risk in areas with high poultry density. The final predictive map identified high-risk hotspots primarily concentrated in eastern and southern China. Our findings indicate that H5 AI risk is governed by a hierarchical interplay of multi-scale environmental drivers. This interpretable modeling approach provides a valuable tool for developing targeted surveillance and early warning systems to mitigate the threat of avian influenza.

摘要

禽流感(AI),尤其是H5亚型,在全球范围内构成了重大且持续的威胁。虽然环境因素对禽流感季节性的影响已得到认可,但对于像中国这样地域广阔且生态多样的国家,多尺度驱动因素的层级和交互作用的全面理解仍然有限。我们开发了一个可解释的机器学习框架(带SHAP值的XGBoost),以分析2000年至2023年中国大陆1800起H5禽流感疫情的时空风险。我们整合了多源数据,包括动态家禽密度、柯本气候分类、重要鸟类和生物多样性区域(IBA)以及每日气象变量,以识别关键驱动因素并量化它们的非线性和协同效应。该模型显示出较高的预测准确性(5折交叉验证R2 = 0.776)。我们的分析表明,宏观尺度的生态背景,特别是家禽密度和特定的柯本气候区(如Cwa)以及强烈的季节性,是禽流感风险的最主要驱动因素。我们确定了显著的非线性关系,例如与温度的强烈负相关,以及高温在高家禽密度地区大幅放大风险的关键协同相互作用。最终的预测地图确定高风险热点主要集中在中国东部和南部。我们的研究结果表明,H5禽流感风险受多尺度环境驱动因素的层级相互作用支配。这种可解释的建模方法为开发有针对性的监测和预警系统以减轻禽流感威胁提供了一个有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54dd/12382930/f438c419e5b5/animals-15-02447-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验