Suppr超能文献

棉花产业中深度学习应用的全面综述:从田间监测到智能加工

A Comprehensive Review of Deep Learning Applications in Cotton Industry: From Field Monitoring to Smart Processing.

作者信息

Yang Zhi-Yu, Xia Wan-Ke, Chu Hao-Qi, Su Wen-Hao, Wang Rui-Feng, Wang Haihua

机构信息

College of Information and Electrical Engineering, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China.

College of Land Science and Technology, China Agricultural University, 17 Qinghua East Road, Haidian, Beijing 100083, China.

出版信息

Plants (Basel). 2025 May 15;14(10):1481. doi: 10.3390/plants14101481.

Abstract

Cotton is a vital economic crop in global agriculture and the textile industry, contributing significantly to food security, industrial competitiveness, and sustainable development. Traditional technologies such as spectral imaging and machine learning improved cotton cultivation and processing, yet their performance often falls short in complex agricultural environments. Deep learning (DL), with its superior capabilities in data analysis, pattern recognition, and autonomous decision-making, offers transformative potential across the cotton value chain. This review highlights DL applications in seed quality assessment, pest and disease detection, intelligent irrigation, autonomous harvesting, and fiber classification et al. DL enhances accuracy, efficiency, and adaptability, promoting the modernization of cotton production and precision agriculture. However, challenges remain, including limited model generalization, high computational demands, environmental adaptability issues, and costly data annotation. Future research should prioritize lightweight, robust models, standardized multi-source datasets, and real-time performance optimization. Integrating multi-modal data-such as remote sensing, weather, and soil information-can further boost decision-making. Addressing these challenges will enable DL to play a central role in driving intelligent, automated, and sustainable transformation in the cotton industry.

摘要

棉花是全球农业和纺织工业中至关重要的经济作物,对粮食安全、产业竞争力和可持续发展做出了重大贡献。光谱成像和机器学习等传统技术改善了棉花种植和加工,但在复杂的农业环境中其性能往往不尽人意。深度学习(DL)在数据分析、模式识别和自主决策方面具有卓越能力,为整个棉花价值链带来了变革潜力。本综述重点介绍了深度学习在种子质量评估、病虫害检测、智能灌溉、自主收获和纤维分类等方面的应用。深度学习提高了准确性、效率和适应性,推动了棉花生产和精准农业的现代化。然而,挑战依然存在,包括模型泛化能力有限、计算需求高、环境适应性问题以及数据标注成本高昂。未来的研究应优先考虑轻量级、稳健的模型、标准化的多源数据集以及实时性能优化。整合多模态数据,如遥感、天气和土壤信息,可以进一步提升决策能力。应对这些挑战将使深度学习在推动棉花产业的智能化、自动化和可持续转型中发挥核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd2/12115130/5b56ff04379b/plants-14-01481-g001.jpg

相似文献

2
Precise application of water and fertilizer to crops: challenges and opportunities.
Front Plant Sci. 2024 Dec 6;15:1444560. doi: 10.3389/fpls.2024.1444560. eCollection 2024.
3
A comprehensive cotton leaf disease dataset for enhanced detection and classification.
Data Brief. 2024 Sep 10;57:110913. doi: 10.1016/j.dib.2024.110913. eCollection 2024 Dec.
4
Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives.
Front Plant Sci. 2025 May 14;16:1587869. doi: 10.3389/fpls.2025.1587869. eCollection 2025.
6
Improving crop production using an agro-deep learning framework in precision agriculture.
BMC Bioinformatics. 2024 Nov 1;25(1):341. doi: 10.1186/s12859-024-05970-9.
7
Deep learning based abiotic crop stress assessment for precision agriculture: A comprehensive review.
J Environ Manage. 2025 May;381:125158. doi: 10.1016/j.jenvman.2025.125158. Epub 2025 Apr 9.
9
Detection of cotton crops diseases using customized deep learning model.
Sci Rep. 2025 Mar 28;15(1):10766. doi: 10.1038/s41598-025-94636-4.
10
Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review.
ScientificWorldJournal. 2024 Oct 9;2024:2126734. doi: 10.1155/2024/2126734. eCollection 2024.

引用本文的文献

本文引用的文献

1
A comprehensive cotton leaf disease dataset for enhanced detection and classification.
Data Brief. 2024 Sep 10;57:110913. doi: 10.1016/j.dib.2024.110913. eCollection 2024 Dec.
2
Efficient online detection device and method for cottonseed breakage based on Light-YOLO.
Front Plant Sci. 2024 Aug 9;15:1418224. doi: 10.3389/fpls.2024.1418224. eCollection 2024.
3
SRNet-YOLO: A model for detecting tiny and very tiny pests in cotton fields based on super-resolution reconstruction.
Front Plant Sci. 2024 Aug 9;15:1416940. doi: 10.3389/fpls.2024.1416940. eCollection 2024.
5
YOLO SSPD: a small target cotton boll detection model during the boll-spitting period based on space-to-depth convolution.
Front Plant Sci. 2024 Jun 20;15:1409194. doi: 10.3389/fpls.2024.1409194. eCollection 2024.
6
Cotton seed cultivar identification based on the fusion of spectral and textural features.
PLoS One. 2024 May 28;19(5):e0303219. doi: 10.1371/journal.pone.0303219. eCollection 2024.
7
The integration of GPS and visual navigation for autonomous navigation of an Ackerman steering mobile robot in cotton fields.
Front Robot AI. 2024 Apr 12;11:1359887. doi: 10.3389/frobt.2024.1359887. eCollection 2024.
9
Identification of cotton pest and disease based on CFNet- VoV-GCSP -LSKNet-YOLOv8s: a new era of precision agriculture.
Front Plant Sci. 2024 Feb 20;15:1348402. doi: 10.3389/fpls.2024.1348402. eCollection 2024.
10
Cotton-Net: efficient and accurate rapid detection of impurity content in machine-picked seed cotton using near-infrared spectroscopy.
Front Plant Sci. 2024 Jan 25;15:1334961. doi: 10.3389/fpls.2024.1334961. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验